A224530 Sequence F_n from a paper by Robert Osburn and Brundaban Sahu.
1, 0, 2, 6, 30, 144, 758, 4080, 22702, 128832, 744300, 4359972, 25842414, 154689912, 933828324, 5678696556, 34754244174, 213901762464, 1323104558204, 8220846355956, 51284447272084, 321095305733280, 2017050339848388, 12708912192988128, 80296949632284814, 508618518515268720
Offset: 0
Keywords
Links
- Robert Osburn and Brundaban Sahu, Congruences via modular forms, arXiv:0912.0173 [math.NT], 2009-2010.
Programs
-
Sage
def a(n): if n==0: return 1 F=sum([sum([x^(2*a^2+a*b+3*b^2) for a in range(-n,n)]) for b in range(-n,n)]) eta = x^(1/24)*product([(1 - x^k) for k in range(1, n)]) t2 = eta*eta(x=x^23)/F for k in range(1, n): c = F.taylor(x, 0, k).coefficient(x^k) F -= c*(t2^k) return F.taylor(x, 0, n).coefficient(x^n) # Robin Visser, Aug 03 2023
Extensions
More terms from Robin Visser, Aug 03 2023
Comments