A224612 Let p = prime(n). Smallest j such that q = j*2*p^3-1, r = j*p*2*q^2-1, s = j*p*2*r^2-1, and j*p*2*s^2-1 are prime numbers.
29952, 12063, 1463, 6102, 11661, 49552, 639179, 2099290, 291248, 393186, 545251, 321303, 436641, 278295, 746832, 237852, 56490, 165901, 152847, 619755, 777177, 3410085, 117513, 2015421, 497170, 14750, 161190, 347039, 251835, 57536, 222, 2083286, 384944, 1228474, 3909960, 344164, 332224, 207751, 14060
Offset: 1
Keywords
Programs
-
Maple
f:= proc(n) local j,p,q,r,s; p:= ithprime(n); for j from 1 do q:= j*2*p^3-1; if not isprime(q) then next fi; r:= j*p*2*q^2-1; if not isprime(r) then next fi; s:= j*p*2*r^2-1; if not isprime(s) then next fi; if isprime(j*p*2*s^2-1) then return j fi; od end proc; map(f, [$1..25]); # Robert Israel, May 15 2025
-
Mathematica
a[n_] := For[j = 1, j < 10^7, j++, p = Prime[n]; If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[r = j*2*p*q^2 - 1] && PrimeQ[s = j*2*p*r^2 - 1] && PrimeQ[j*2*p*s^2 - 1], Return[j]]]; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Apr 12 2013 *)
Extensions
More terms from Jean-François Alcover, Apr 12 2013
Name clarified and more terms from Robert Israel, May 15 2025
Comments