A224653 Irregular table which shows in row n the dimensions of the irreducible representations of the permutation group of order n!.
1, 1, 1, 1, 2, 1, 2, 3, 1, 4, 5, 6, 1, 5, 9, 10, 16, 1, 6, 14, 15, 20, 21, 35, 1, 7, 14, 20, 21, 28, 35, 42, 56, 64, 70, 90, 1, 8, 27, 28, 42, 48, 56, 70, 84, 105, 120, 162, 168, 189, 216, 1, 9, 35, 36, 42, 75, 84, 90, 126, 160, 210, 225, 252, 288, 300, 315, 350, 448, 450, 525, 567, 768
Offset: 0
Examples
The group of permutations of [8] has 2 representations of dimension 1, 2 of dimension 7, 2 of dimension 14, 2 of dimension 20, 2 of dimension 21, 2 of dimension 28, 2 of dimension 35, 1 of dimension 42, 2 of dimension 56, 2 of dimension 64, 2 of dimension of 70 and 1 of dimension 90. 1; 1; 1; 1,2; 1,2,3; 1,4,5,6; 1,5,9,10,16; 1,6,14,15,20,21,35; 1,7,14,20,21,28,35,42,56,64,70,90; 1,8,27,28,42,48,56,70,84,105,120,162,168,189,216; 1,9,35,36,42,75,84,90,126,160,210,225,252,288,300,315,350,448,450,525,567,768;
Links
- Alois P. Heinz, Rows n = 0..40, flattened
Crossrefs
Cf. A060240.
Programs
-
Maple
h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0, seq(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))): T:= n-> sort([{g(n$2, [])}[]])[]: seq(T(n), n=0..12); # Alois P. Heinz, May 26 2015
-
Mathematica
h[l_List] := Module[{n}, n = Length[l]; Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n==0 || i==1, h[Join[l, Array[1&, n]]], If[i<1, 0,Table[g[n - i*j, i-1, Join [l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := g[n, n, {}] // Flatten // Union; T[1] = {1}; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 03 2015, after Alois P. Heinz *)
Comments