cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224673 Number of (n+1) X 6 0..2 matrices with each 2 X 2 subblock idempotent.

Original entry on oeis.org

115, 191, 257, 381, 542, 793, 1166, 1746, 2650, 4080, 6355, 9996, 15843, 25257, 40439, 64951, 104556, 168579, 272108, 439556, 710424, 1148626, 1857577, 3004606, 4860457, 7863203, 12721661, 20582721, 33302090, 53882365, 87181850, 141061446
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2013

Keywords

Comments

Column 5 of A224676.

Examples

			Some solutions for n=3:
  1 0 0 0 0 0    1 0 0 0 0 0    0 0 1 0 0 0    1 0 0 0 0 0
  0 0 0 0 0 0    1 0 0 0 0 0    0 0 1 0 0 0    1 0 0 0 0 0
  0 0 0 0 0 0    1 0 0 0 0 0    0 0 1 0 0 0    0 0 0 0 0 0
  2 1 1 1 1 1    2 0 0 1 1 1    0 0 1 0 0 0    2 1 1 1 1 1
		

Formula

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n > 6.
Conjectures from Colin Barker, Feb 17 2018: (Start)
G.f.: x*(115 - 269*x + 68*x^2 + 193*x^3 - 118*x^4 + 6*x^5) / ((1 - x)^3*(1 - x - x^2)).
a(n) = 34 + (2^(-1-n)*((1-sqrt(5))^n*(-11+53*sqrt(5)) + (1+sqrt(5))^n*(11+53*sqrt(5)))) / sqrt(5) + 14*(1+n) + (5/2)*(1 + n)*(2+n) for n>1.
(End)