cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224678 L.g.f.: -log(1 - Sum_{n>=1} x^(n*(n+1)/2)) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 1, 4, 5, 6, 16, 22, 29, 49, 86, 122, 188, 300, 456, 714, 1117, 1718, 2653, 4124, 6390, 9916, 15368, 23806, 36884, 57181, 88622, 137344, 212896, 329934, 511316, 792516, 1228285, 1903598, 2950334, 4572602, 7086833, 10983562, 17022956, 26382984, 40889694, 63373086, 98218920
Offset: 1

Views

Author

Paul D. Hanna, Apr 14 2013

Keywords

Examples

			L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 6*x^5/5 + 16*x^6/6 + 22*x^7/7 + 29*x^8/8 + 49*x^9/9 + 86*x^10/10 +...
where
exp(L(x)) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 11*x^7 + 16*x^8 + 25*x^9 + 40*x^10 + 61*x^11 + 94*x^12 +...+ A023361(n)*x^n +...
exp(-L(x)) = 1 - x - x^3 - x^6 - x^10 - x^21 - x^28 +...+ -x^(n*(n+1)/2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n*polcoeff(-log(1-sum(r=1, sqrtint(2*n+1), x^(r*(r+1)/2)+x*O(x^n))), n)}
    for(n=1, 50, print1(a(n), ", "))

Formula

Logarithmic derivative of A023361, where A023361(n) = number of compositions of n into positive triangular numbers.