A224694 Numbers n such that n^2 AND n = 0, where AND is the bitwise logical AND operator.
0, 2, 4, 8, 10, 12, 16, 18, 24, 26, 32, 34, 36, 40, 44, 48, 50, 56, 64, 66, 68, 76, 80, 90, 96, 98, 100, 108, 112, 128, 130, 132, 136, 138, 144, 146, 152, 160, 164, 168, 176, 184, 192, 194, 196, 208, 224, 228, 240, 256, 258, 260, 264, 266, 268, 280, 282, 288, 290, 296, 312
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A213541.
Programs
-
Haskell
import Data.List (elemIndices) a224694 n = a224694_list !! (n-1) a224694_list = elemIndices 0 a213541_list -- Reinhard Zumkeller, Apr 25 2013
-
Maple
read("transforms") : isA224694 := proc(n) return( ANDnos(n^2,n) =0 ) ; end proc: A224694 := proc(n) option remember; if n = 1 then 0; else for a from procname(n-1)+1 do if isA224694(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Apr 25 2013
-
Mathematica
Select[Range[0, 350], BitAnd[#^2, #] == 0 &] (* Matthew House, Jul 14 2015 *)
-
Python
for i in range(333): if ((i*i) & i)==0: print(i, end=', ')
Comments