cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224769 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1) and S=(0,1).

Original entry on oeis.org

1, 1, 2, 7, 33, 184, 1142, 7629, 53750, 394157, 2981546, 23117242, 182867360, 1470714606, 11993628444, 98967634147, 824958769631, 6937180941468, 58785077008641, 501520244718945, 4304433733010962, 37142428443486254, 322042675618484973, 2804409601249038670
Offset: 0

Views

Author

Alois P. Heinz, Apr 17 2013

Keywords

Examples

			a(2) = 2: UDSS, UU.
a(3) = 7: UDSDSSS, UDUSS, UDSSDSS, UUDSS, UDSUS, UDSSU, UUU.
		

Crossrefs

Cf. A198324 (paths to (n,0)), A225042 (with additional H-steps), A286425.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y>x, 0, `if`(x=0, 1,
          `if`(y>0, b(x, y-1)+b(x-1, y-1), 0)+b(x-1, y+1)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y > x, 0, If[x == 0, 1, If[y > 0, b[x, y - 1] + b[x - 1, y - 1], 0] + b[x - 1, y + 1]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 3/4*(71 + 8*sqrt(2))^(1/3) + 51/(4*(71 + 8*sqrt(2))^(1/3)) + 13/4 = 9.4435356015932520820011..., c = 0.00814413508604516738631686716788556507884786... . - Vaclav Kotesovec, Sep 07 2014