A224770 Numbers that are the primitive sum of two squares in exactly two ways.
65, 85, 130, 145, 170, 185, 205, 221, 265, 290, 305, 325, 365, 370, 377, 410, 425, 442, 445, 481, 485, 493, 505, 530, 533, 545, 565, 610, 629, 650, 685, 689, 697, 725, 730, 745, 754, 785, 793, 845, 850, 865, 890, 901, 905, 925, 949, 962, 965, 970
Offset: 1
Keywords
Examples
n=1, 65: (1, 8), (4, 7), n=2, 85: (2, 9), (6, 7), n=3, 130: (3, 11), (7, 9), n=4, 145: (1, 12), (8, 9), n=5, 170: (1, 13), (7, 11), n=6, 185: (4, 13), (8, 11), n=7, 205: (3, 14), (6, 13), n=8, 221: (5, 14), (10, 11), n=9, 265: (3, 16), (11, 12), n=10, 290: (1, 17), (11, 13).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 35; t = Sort[Select[Flatten[Table[If[GCD[a, b] == 1, a^2 + b^2, 0], {a, nn}, {b, a, nn}]], 0 < # <= nn^2 &]]; Transpose[Select[Tally[t], #[[2]] == 2 &]][[1]] (* T. D. Noe, Apr 20 2013 *)
Formula
a(n) = a^2 + b^2, a and integers, 0 < a < b and gcd(a,b) = 1 in exactly two ways. These representations of a(n) are denoted by two different pairs (a,b).
Comments