cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A224773 One half of the even terms of A224771.

Original entry on oeis.org

7, 13, 15, 19, 21, 23, 25, 27, 31, 33, 35, 37, 39, 43, 45, 47, 49, 53, 55, 57, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 1

Views

Author

Wolfdieter Lang, Apr 19 2013

Keywords

Comments

2*a(n), n >= 1, gives all even numbers representable as a primitive sum of three distinct nonzero squares.
The numbers a(n) are of interest in a problem related to integer solutions for the curvatures of the Descartes-Steiner circle theorem.

Examples

			a(1) = 7 because the first even term of A224771 is 14 (m = 1).
a(9) = 31 because 62 is the ninth even term of A224771 (m = 18).
		

Crossrefs

Cf. A224771.

Formula

a(n) is one half of the n-th even term of A224771.

A224772 Multiplicities for representations of numbers as primitive sums of three distinct nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 2, 2, 1, 0, 1, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 2, 1, 1, 0, 1, 3, 0, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 0, 1, 3, 0, 0, 1, 2, 1, 0, 2
Offset: 1

Views

Author

Wolfdieter Lang, Apr 19 2013

Keywords

Comments

a(n) = k, for n >= 1, if there are exactly k representations of n as a primitive sum of three distinct nonzero squares. If a(n) = 0 then n has no such representation.
The increasingly ordered numbers with a(n) > 0 are given in A224771.

Examples

			a(14) = 1 because the first number with a representation in question, denoted by a triple (a, b, c), is 14, with the unique triple (1, 2, 3).
a(62) = 2 for the first number 62 which has two representations, denoted by (1, 5, 6) and (2, 3, 7).
a(101) = 3 for the first number 101 with three triples, namely (1, 6, 8), (2, 4, 9) and (4, 6, 7).
		

Crossrefs

Cf. A224771, A025442 (multiplicities for sums of three distinct nonzero squares).

Programs

  • Mathematica
    nn = 10; t = Table[0, {nn^2}]; Do[If[GCD[a, b, c] == 1, n = a^2 + b^2 + c^2; If[n <= nn^2, t[[n]]++]], {a, nn}, {b, a + 1, nn}, {c, b + 1, nn}]; t (* T. D. Noe, Apr 20 2013 *)

Formula

a(n) = k if n = a^2 + b^2 + c^2, a, b, and c integers, 0 < a < b < c and gcd(a,b,c) = 1, for exactly k different triples (a, b, c). If there is no such triple then a(n) = 0.
Showing 1-2 of 2 results.