A224790 a(n) = 3*9^n + 8.
11, 35, 251, 2195, 19691, 177155, 1594331, 14348915, 129140171, 1162261475, 10460353211, 94143178835, 847288609451, 7625597484995, 68630377364891, 617673396283955, 5559060566555531, 50031545098999715, 450283905890997371, 4052555153018976275
Offset: 0
Links
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Frank Luebeck, Numbers of Conjugacy Classes in Finite Groups of Lie Type.
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
Crossrefs
Cf. A188161.
Programs
-
GAP
List([0..20], n-> 8 + 3^(2*n+1)); # G. C. Greubel, Nov 12 2019
-
Magma
[8 + 3^(2*n+1): n in [0..20]]; // G. C. Greubel, Nov 12 2019
-
Maple
seq(8+3^(2*n+1), n=0..20); # G. C. Greubel, Nov 12 2019
-
Mathematica
8 + 3^(2*Range[21]-1) (* G. C. Greubel, Nov 12 2019 *)
-
PARI
a(n)=3*9^n+8 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[3*9^n+8 for n in [0..20]]
Formula
G.f.: 8/(1-x) + 3/(1-9*x).
a(n) = 10*a(n-1) - 9*a(n-2).
E.g.f.: 8*exp(x) + 3*exp(9*x). - G. C. Greubel, Nov 12 2019
Comments