A224820 Array r(n,m), where r(n,1) = n; r(n,2) = least k such that H(k) - H(n) > 1/n; and for m > 2, r(n,m) = least k such that H(k)-H(r(n,m-1)) > H(r(n,m-1)) - H(r(n,m-2)), where H = harmonic number.
1, 4, 2, 13, 4, 3, 40, 8, 5, 4, 121, 16, 9, 6, 5, 364, 32, 16, 9, 7, 6, 1093, 64, 29, 14, 10, 8, 7, 3280, 128, 53, 22, 15, 11, 9, 8, 9841, 256, 97, 35, 23, 16, 12, 10, 9, 29524, 512, 178, 56, 36, 24, 16, 13, 11, 10, 88573, 1024, 327, 90, 57, 36, 22, 17, 14, 12, 11
Offset: 1
Examples
Northwest corner: m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 n=1: 1, 4, 13, 40, 121, 364, 1093, 3280 n=2: 2, 4, 8, 16, 32, 64, 128, 256 n=3: 3, 5, 9, 16, 29, 53, 97, 178 n=4: 4, 6, 9, 14, 22, 35, 56, 90 n=5: 5, 7, 10, 15, 23, 36, 57, 91 n=6: 6, 8, 11, 16, 24, 36, 54, 81 n=7: 7, 9, 12, 16, 22, 31, 44, 63 n=8: 8, 10, 13, 17, 23, 32, 45, 64 The chain indicated by row n=4 is 1/4 < 1/5 + 1/6 < 1/7 + 1/8 + 1/9 < 1/10 + ... + 1/14 < ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1830
Crossrefs
Cf. A225918.
Programs
-
Mathematica
h[n_] := h[n] = HarmonicNumber[N[n, 300]]; z = 12; Table[s = 0; a[1] = NestWhile[# + 1 &, x + 1, ! (s += 1/#) >= h[x] - h[x - 1] &]; s = 0; a[2] = NestWhile[# + 1 &, a[1] + 1, ! (s += 1/#) >= h[a[1]] - h[x] &]; Do[test = h[a[t - 1]] - h[a[t - 2]] + h[a[t - 1]]; s = 0; a[t] = Floor[x /. FindRoot[h[x] == test, {x, a[t - 1]}, WorkingPrecision -> 100]] + 1, {t, 3, z}]; Flatten[{x, Map[a, Range[z]]}], {x, 1, z}] // TableForm (* A224820 array *) t = Flatten[Table[%[[n - k + 1]][[k]], {n, z}, {k, n, 1, -1}]]; (* A224820 sequence *) (* Peter J. C. Moses, Jul 20 2013 *)
Comments