cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224820 Array r(n,m), where r(n,1) = n; r(n,2) = least k such that H(k) - H(n) > 1/n; and for m > 2, r(n,m) = least k such that H(k)-H(r(n,m-1)) > H(r(n,m-1)) - H(r(n,m-2)), where H = harmonic number.

Original entry on oeis.org

1, 4, 2, 13, 4, 3, 40, 8, 5, 4, 121, 16, 9, 6, 5, 364, 32, 16, 9, 7, 6, 1093, 64, 29, 14, 10, 8, 7, 3280, 128, 53, 22, 15, 11, 9, 8, 9841, 256, 97, 35, 23, 16, 12, 10, 9, 29524, 512, 178, 56, 36, 24, 16, 13, 11, 10, 88573, 1024, 327, 90, 57, 36, 22, 17, 14, 12, 11
Offset: 1

Views

Author

Clark Kimberling, Jul 21 2013

Keywords

Comments

For every n, the sequence H(r(n,m)) - H(r(n,m-1)) converges as m -> oo. Which row-sequences are linearly recurrent? Is r(4,m) = 1 + F(m+3), where F = A000045 (Fibonacci numbers)?
More generally, suppose that x and y are positive integers and that x <= y. Let c(1) = y and c(2) = least k such that H(k) - H(y) > H(y) - H(x); for n > 2, let c(n) = least k such that H(k) - H(c(n-1)) > H(c(n-1)) - H(c(n-2)). Thus the Egyptian fractions for m >= x are partitioned, and 1/x + ... + 1/c(1) < 1/(c(1)+1) + ... + 1/(c(2)) < 1/(c(2)+1) + ... + 1/(c(3)) < ... The sequences H(c(n))-H(c(n-1)) and c(n)/c(n-1) converge. For what choices of (x,y) is the sequence c(n) linearly recurrent?

Examples

			Northwest corner:
       m=1  m=2  m=3  m=4  m=5  m=6   m=7   m=8
  n=1:   1,   4,  13,  40, 121, 364, 1093, 3280
  n=2:   2,   4,   8,  16,  32,  64,  128,  256
  n=3:   3,   5,   9,  16,  29,  53,   97,  178
  n=4:   4,   6,   9,  14,  22,  35,   56,   90
  n=5:   5,   7,  10,  15,  23,  36,   57,   91
  n=6:   6,   8,  11,  16,  24,  36,   54,   81
  n=7:   7,   9,  12,  16,  22,  31,   44,   63
  n=8:   8,  10,  13,  17,  23,  32,   45,   64
The chain indicated by row n=4 is
1/4 < 1/5 + 1/6 < 1/7 + 1/8 + 1/9 < 1/10 + ... + 1/14 < ...
		

Crossrefs

Cf. A225918.

Programs

  • Mathematica
    h[n_] := h[n] = HarmonicNumber[N[n, 300]]; z = 12; Table[s = 0; a[1] = NestWhile[# + 1 &, x + 1, ! (s += 1/#) >= h[x] - h[x - 1] &];   s = 0; a[2] = NestWhile[# + 1 &, a[1] + 1, ! (s += 1/#) >= h[a[1]] - h[x] &]; Do[test = h[a[t - 1]] - h[a[t - 2]] + h[a[t - 1]]; s = 0; a[t] = Floor[x /. FindRoot[h[x] == test, {x, a[t - 1]}, WorkingPrecision -> 100]] + 1, {t, 3, z}]; Flatten[{x, Map[a, Range[z]]}], {x, 1, z}] // TableForm (* A224820 array *)
    t = Flatten[Table[%[[n - k + 1]][[k]], {n, z}, {k, n, 1, -1}]]; (* A224820 sequence *) (* Peter J. C. Moses, Jul 20 2013 *)