A227728
a(1) = greatest k such that H(k) - H(2) < 1/1 + 1/2; a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(2); and for n>2, a(n) = greatest k such that H(k) - H(a(n-1)) < H(a(n-1)) - H(a(n-2)), where H = harmonic number.
Original entry on oeis.org
10, 43, 179, 740, 3054, 12599, 51971, 214376, 884278, 3647546, 15045706, 62061794, 255997704, 1055960840, 4355715996, 17966823308, 74111062350, 305699536774, 1260975134078, 5201376179830, 21455073484758, 88499689759294, 365050956038686, 1505792854949114
Offset: 1
The first three values (a(1),a(2),a(3)) = (10,43,179) match the beginning of the following inequality chain (and partition of the harmonic numbers): 1/1 + 1/2 > 1/3 + 1/4 + ... + 1/10 > 1/11 + ... + 1/43 > 1/44 + ... + 1/179 > ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 1; y = 2; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A227728 *)
N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 50] (* A227729 *)
N[Table[a[n]/a[n - 1], {n, 2, z, 25}], 50] (* A225815 *)
A224868
a(1) = greatest k such that H(k) - H(4) < 1/3 + 1/4; a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(4); and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.
Original entry on oeis.org
7, 11, 17, 26, 39, 58, 86, 127, 187, 275, 404, 593, 870, 1276, 1871, 2743, 4021, 5894, 8639, 12662, 18558, 27199, 39863, 58423, 85624, 125489, 183914, 269540, 395031, 578947, 848489, 1243522, 1822471, 2670962, 3914486, 5736959, 8407923, 12322411, 18059372
Offset: 1
The first three values (a(1),a(2),a(3)) = (7,11,17) match the beginning of the following inequality chain (and partition of {1/m: m>=3}):
1/3+1/4 > 1/5+1/6+1/7 > 1/8+1/9+1/10+1/11 > 1/12+ ... +1/17 > ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 4; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A224868 *)
N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 5] (* A202537? *)
N[Table[a[n]/a[n - 1], {n, 2, z, 25}], 5] (* A092526? *)
(* Peter J. C. Moses, Jul 23 2013 *)
A227965
a(1) = least k such that 1 + 1/2 < H(k) - H(2); a(2) = least k such that H(a(1)) - 1/2 < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.
Original entry on oeis.org
11, 53, 249, 1164, 5435, 25371, 118428, 552798, 2580343, 12044484, 56221045, 262427666, 1224955522, 5717827134, 26689578960, 124581175389, 581517950673, 2714399875409, 12670230858892, 59141894115145, 276061555506087, 1288595564424512, 6014885070144844
Offset: 1
The first two values (a(1),a(2)) = (11,53) match the beginning of the following inequality chain (and partition of the harmonic numbers): 1/1 + 1/2 < 1/3 + ... + 1/11 < 1/12 + ... + 1/53 < ...
-
z = 300; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 1; y = 2;
a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
m = Map[a, Range[z]] (* A227965 *)
t = N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 60]
Last[RealDigits[t, 10]] (* A227966 *)
t = N[Table[a[t]/a[t - 1], {t, 2, z, 50}], 60]
Last[RealDigits[t, 10]] (* A227967 *)
(* A227965, Peter J. C. Moses, Jul 12 2013*)
A227653
a(1) = least k such that 1/2 + 1/3 < H(k) - H(3); a(2) = least k such that H(a(1)) - H(3) < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.
Original entry on oeis.org
8, 21, 54, 138, 352, 897, 2285, 5820, 14823, 37752, 96148, 244872, 623645, 1588311, 4045140, 10302237, 26237926, 66823230, 170186624, 433434405, 1103878665, 2811378360, 7160069791, 18235396608, 46442241368, 118279949136, 301237536249, 767197263003
Offset: 1
The first two values (a(1),a(2)) = (8,21) match the beginning of the following inequality chain: 1/2 + 1/3 < 1/4 + ... + 1/8 < 1/9 + ... + 1/21 < ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 2; y = 3;
a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
m = Map[a, Range[z]] (* A227653, Peter J. C. Moses, Jul 12 2013 *)
A227816
a(1) = greatest k such that H(k) - H(6) < H(6) - H(3); a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(6), and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.
Original entry on oeis.org
16, 41, 103, 257, 640, 1592, 3958, 9839, 24457, 60792, 151107, 375596, 933591, 2320556, 5768028, 14337143, 35636731, 88579473, 220175161, 547272407, 1360312788, 3381224518, 8404448844, 20890289891, 51925381404, 129066913288, 320811665802, 797416799492
Offset: 1
The first two values (a(1),a(2)) = (16,41) match the beginning of the following inequality chain (and partition of the harmonic numbers H(n) for n >= 3 ):
1/3 + 1/4 + 1/5 + 1/6 > 1/7 + ... + 1/16 < 1/17 + ... + 1/41 < ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 6; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* (A227804) Peter J. C. Moses, Jul 23 2013 *)
A228016
a(1) = least k such that 1/1+1/2+1/3+1/4+1/5 < H(k) - H(5); a(2) = least k such that H(a(1)) - H(5) < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.
Original entry on oeis.org
54, 539, 5340, 52865, 523314, 5180279, 51279480, 507614525, 5024865774, 49741043219, 492385566420, 4874114620985, 48248760643434, 477613491813359, 4727886157490160, 46801248083088245, 463284594673392294, 4586044698650834699, 45397162391834954700
Offset: 1
The first two values (a(1),a(2)) = (54,539) match the beginning of the following inequality chain: 1/1+1/2+1/3+1/4+1/5 < 1/6+...+1/54 < 1/55+...+1/539 < ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 1; y = 5;
a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
m = Map[a, Range[z]] (* A227653, Peter J. C. Moses, Jul 12 2013 *)
A227804
a(1) = greatest k such that H(k) - H(8) < H(8) - H(4); a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(8), and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.
Original entry on oeis.org
15, 27, 48, 85, 150, 264, 464, 815, 1431, 2512, 4409, 7738, 13580, 23832, 41823, 73395, 128800, 226029, 396654, 696080, 1221536, 2143647, 3761839, 6601568, 11584945, 20330162, 35676948, 62608680, 109870575, 192809419, 338356944, 593775045, 1042002566
Offset: 1
The first three values (a(1),a(2),a(3)) = (10,43,179) match the beginning of the following inequality chain (and partition of the harmonic numbers H(n) for n >= 5 ): 1/5 + 1/6 + 1/7 + 1/8 > 1/9 + ... + 1/15 < 1/16 + ... + 1/27 < 1/28 + ... + 1/48 > ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 5; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A227804, Peter J. C. Moses, Jul 23 2013 *)
A225605
a(1) = least k such that 1/3 < H(k) - 1/3; a(2) = least k such that H(a(1)) - H(3) < H(k) - H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.
Original entry on oeis.org
5, 9, 16, 29, 53, 97, 178, 327, 601, 1105, 2032, 3737, 6873, 12641, 23250, 42763, 78653, 144665, 266080, 489397, 900141, 1655617, 3045154, 5600911, 10301681, 18947745, 34850336, 64099761, 117897841, 216847937, 398845538, 733591315, 1349284789, 2481721641
Offset: 1
The first two values (a(1),a(2)) = (5,9) match the beginning of the following inequality chain:
1/3 < 1/4 + 1/5 < 1/6 + 1/7 + 1/8 + 1/9 < ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 3;
a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
m = Map[a, Range[z]] (* A225605, Peter J. C. Moses, Jul 12 2013 *)
A228025
a(1) = least k such that 1/2+1/3+1/4+1/5 < H(k) - H(5); a(2) = least k such that H(a(1)) - H(5) < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.
Original entry on oeis.org
20, 76, 285, 1065, 3976, 14840, 55385, 206701, 771420, 2878980, 10744501, 40099025, 149651600, 558507376, 2084377905, 7779004245, 29031639076, 108347552060, 404358569165, 1509086724601, 5631988329240, 21018866592360, 78443478040201, 292755045568445
Offset: 1
The first two values (a(1),a(2)) = (20,76) match the beginning of the following inequality chain: 1/2+1/3+1/4+1/5 < 1/6+...+1/20 < 1/21+...+1/76 < ...
-
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 2; y = 5;
a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
m = Map[a, Range[z]] (* A227653, Peter J. C. Moses, Jul 12 2013 *)
A364200
Minimal number of terms of mixed-sign Egyptian fraction f such that H(n) + f is an integer, where H(n) is the n-th harmonic number.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 3, 3, 3, 2, 2, 3, 4, 3, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6
Offset: 1
For n=10: H(10) = 7381/2520 = 2.928...; H(10) - floor(H(10)) = 7381/2520 - 2 = 2341/2520 = 1/2 + 1/7 + 1/8 + 1/9 + 1/20, which cannot be expressed as the sum of fewer than 5 reciprocals, and ceiling(H(10)) - H(10) = 3 - 7381/2520 = 179/2520 = 1/30 + 1/42 + 1/72, which cannot be expressed as the sum of fewer than 3 reciprocals, so A363937(10) = 3.
But 179/2520 = 1/14 - 1/2520 (a "mixed-sign Egyptian fraction"), so a(10) = 2.
-
check[f_, k_] := (If[Numerator@f == 1, Return@True];
If[k == 1, Return@False];
Catch[Do[If[check[f - 1/i, k - 1], Throw@True],
{i, Range[Ceiling[1/f], Floor[k/f]]}];
Throw@False]);
checkMixed[f_, k_, m_] := If[m == 1,
Catch[Do[If[check[1/i - f, k], Throw@True],
{i, Range[2, Floor[1/f]]}];
Throw@False],
checkMixed[f, k, m - 1]];
a[n_] := (h = HarmonicNumber[n];
d = Min[h - Floor@h, Ceiling@h - h];
j = 1;
While[Not@check[d, j], j++];
res = j;
Do[
If[checkMixed[d, i - m, m], res = i],
{i, 2, j - 1}, {m, 1, i - 1}];
res);
Showing 1-10 of 10 results.
Comments