A224825 Expansion of psi(x) * psi(x^3)^2 in powers of x where psi() is a Ramanujan theta function.
1, 1, 0, 3, 2, 0, 4, 1, 0, 5, 3, 0, 5, 4, 0, 5, 1, 0, 7, 5, 0, 7, 4, 0, 9, 0, 0, 7, 6, 0, 6, 6, 0, 11, 3, 0, 8, 5, 0, 10, 6, 0, 8, 2, 0, 9, 6, 0, 14, 8, 0, 10, 0, 0, 15, 7, 0, 7, 8, 0, 7, 4, 0, 14, 9, 0, 14, 6, 0, 16, 1, 0, 8, 11, 0, 13, 10, 0, 13, 0, 0, 12
Offset: 0
Keywords
Examples
G.f. = 1 + x + 3*x^3 + 2*x^4 + 4*x^6 + x^7 + 5*x^9 + 3*x^10 + 5*x^12 + 4*x^13 + ... G.f. = q^7 + q^15 + 3*q^31 + 2*q^39 + 4*q^55 + q^63 + 5*q^79 + 3*q^87 + 5*q^103 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q^(3/2)]^2 / (8 q^(7/8)), {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A)^2), n))};
Comments