A224830 Numbers n such that both the sum of the semiprime divisors of n and the sum of the prime divisors of n are prime numbers.
36, 72, 108, 144, 165, 210, 216, 273, 288, 324, 345, 385, 399, 432, 462, 561, 576, 595, 648, 651, 665, 715, 795, 798, 858, 864, 885, 957, 972, 1001, 1015, 1110, 1152, 1218, 1281, 1290, 1296, 1335, 1443, 1463, 1495, 1515, 1533, 1547, 1551, 1615, 1645, 1659
Offset: 1
Keywords
Examples
72 is in the sequence because the sum of the prime divisors is 2+3 = 5 and the sum of the semiprime divisors is 4 + 2*3 + 9 = 19.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 2 to 2000 do:x:=divisors(n):n1:=nops(x): y:=factorset(n):n2:=nops(y):s1:=0:s2:=0:for i from 1 to n1 do: if bigomega(x[i])=2 then s1:=s1+x[i]:else fi:od: s2:=sum('y[i]', 'i'=1..n2):if type(s1,prime)=true and type(s2,prime)=true then printf(`%d, `,n):else fi:od:
-
Mathematica
primeSum[n_] := Plus @@ First[Transpose[FactorInteger[n]]]; semipSigma[n_] := DivisorSum[n, # &, PrimeOmega[#] == 2 &]; Select[Range[2000], PrimeQ @ primeSum[#] && PrimeQ @ semipSigma[#] &] (* Amiram Eldar, May 10 2020 *)
Comments