cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224834 a(n) = Sum {d|n, d <= n^(1/2)} tau(d)^2.

Original entry on oeis.org

1, 1, 1, 5, 1, 5, 1, 5, 5, 5, 1, 9, 1, 5, 5, 14, 1, 9, 1, 14, 5, 5, 1, 18, 5, 5, 5, 14, 1, 13, 1, 14, 5, 5, 5, 34, 1, 5, 5, 18, 1, 25, 1, 14, 9, 5, 1, 34, 5, 9, 5, 14, 1, 25, 5, 18, 5, 5, 1, 38, 1, 5, 9, 30, 5, 25, 1, 14, 5, 13, 1, 50, 1, 5, 9
Offset: 1

Views

Author

Michel Marcus, Jul 21 2013

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) add(numtheory:-tau(d)^2, d = select(t -> (t^2<=n), numtheory:-divisors(n))) end proc:
    map(f, [$1..100]); # Robert Israel, Nov 30 2016
  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[0, #]^2 &, #^2 <= n &]; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d<=sqrtn(n, 2))*numdiv(d)^2) \\ Michel Marcus, Jul 21 2013
    
  • PARI
    a(n)=my(s=sqrtint(n)); sumdiv(n,d,if(d<=s,numdiv(d)^2)) \\ Charles R Greathouse IV, Jul 22 2013

Formula

If p is prime, a(p^k) = A000330(1+floor(k/2)). - Robert Israel, Nov 30 2016