A224866 Numbers of the form m*rad(m)+1, where rad = A007947 (squarefree kernel).
2, 5, 9, 10, 17, 26, 28, 33, 37, 50, 65, 73, 82, 101, 109, 122, 126, 129, 145, 170, 197, 201, 217, 226, 244, 257, 289, 290, 325, 344, 362, 393, 401, 433, 442, 485, 501, 513, 530, 577, 626, 649, 676, 677, 730, 785, 801, 842, 865, 901, 962, 969, 973, 1001
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a224866 n = a224866_list !! (n-1) a224866_list = [x | x <- [2..] , let x' = x - 1, let k = a007947 x', let (y,m) = divMod x' k, m == 0, a007947 y == k]
-
Mathematica
powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[1001], powQ[# - 1] &] (* Amiram Eldar, Jul 31 2022 *)
-
PARI
is(n) = n>1 && ispowerful(n-1) \\ Charles R Greathouse IV, Aug 08 2013, corrected by Amiram Eldar, Jul 31 2022
Formula
a(n) = A001694(n) + 1.
Comments