cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224873 Triangle of coefficients T(n, k) (n > 0, k < n) in expansion of sin(u*x) * sin(v*x) / (cos(u*x) + cos(v*x)), read by rows.

Original entry on oeis.org

1, 1, 1, 3, 25, 3, 17, 329, 329, 17, 155, 5325, 14301, 5325, 155, 2073, 110605, 563013, 563013, 110605, 2073, 38227, 2918825, 23904881, 45956625, 23904881, 2918825, 38227, 929569, 96075665, 1150348017, 3600524785, 3600524785, 1150348017, 96075665, 929569
Offset: 1

Views

Author

Michael Somos, Jul 23 2013

Keywords

Examples

			1; 1, 1; 3, 25, 3; 17, 329, 329, 17; ...
		

Crossrefs

Programs

  • PARI
    {T(n, k) = local(u = 'u, v = 'v, A); if( n<0 || k>=n, 0, n = 2*n; k = 2*k + 1; A = x * O(x^n); n! * polcoeff( polcoeff( polcoeff( sin( u*x + A) * sin( v*x + A) / (cos( u*x + A) + cos( v*x + A)), n, x), k, u), n - k, v))}

Formula

A024235(n) = Sum_{k = 0..n-1} T(n, k).
A110501(n) = T(n, 0).
E.g.f.: sin(u*x) * sin(v*x) / (cos(u*x) + cos(v*x)) = Sum_{n>0, k