cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159558 a(n) = 2^(n^2+n) * C(n-1 + 1/2^n, n) = [x^n] 1/(1 - 2^(n+1)*x)^(1/2^n).

Original entry on oeis.org

1, 2, 10, 204, 18326, 7157436, 11867138452, 81971848887192, 2329289249771718630, 270079267572894401313900, 127115660247624311548253487740, 242023658005438716992830183038644712
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x/2^2 + 10*x^2/2^6 + 204*x^3/2^12 + 18326*x^4/2^20 +...
A(x) = 1 - log(1-x/2) + log(1-x/4)^2/2! - log(1-x/8)^3/3! +...+ (-1)^n*log(1-x/2^n)^n/n! +...
Illustrate a(n) = [x^n] 1/(1 - 2^(n+1)*x)^(1/2^n):
(1-4*x)^(-1/2) = 1 + (2)*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...
(1-8*x)^(-1/4) = 1 + 2*x + (10)*x^2 + 60*x^3 + 390*x^4 + 2652*x^5 +...
(1-16*x)^(-1/8) = 1 + 2*x + 18*x^2 + (204)*x^3 + 2550*x^4 + 33660*x^5 +...
(1-32*x)^(-1/16) = 1 + 2*x + 34*x^2 + 748*x^3 + (18326)*x^4 + 476476*x^5 +...
(1-64*x)^(-1/32) = 1 + 2*x + 66*x^2 + 2860*x^3 + 138710*x^4 + (7157436)*x^5 +...
where the coefficients in parenthesis form the initial terms of this sequence.
Particular values.
A(1) = 1 + log(2) + log(4/3)^2/2! + log(8/7)^3/3! + log(16/15)^4/4! +...
A(1/2) = 1 + log(4/3) + log(8/7)^2/2! + log(16/15)^3/3! +...
A(1/4) = 1 + log(8/7) + log(16/15)^2/2! + log(32/31)^3/3! +...
A(3/2) = 1 + log(4) + log(8/5)^2/2! + log(16/13)^3/3! + log(32/29)^4/4! +...
Explicitly,
A(1) = 1.734925215983391138169827514899...
A(3/2) = 2.498242012620581570762548014070...
A(r) = 2 at r=1.2139293567161900826815...
A(r) = 3 at r=1.6849757886374480509741...
A(-1) = 0.6191596458119190547682348949108188...
A(-2) = 0.3872099757580366707782339498635620...
A(2) is indeterminate.
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n^2+n) * Binomial[n-1+1/2^n, n], {n,0,15}] (* Vaclav Kotesovec, Oct 20 2020 *)
  • PARI
    a(n)=2^(n^2+n)*binomial(n-1+1/2^n,n)

Formula

G.f.: A(x) = Sum_{n>=0} a(n)*x^n/2^(n^2+n) = Sum_{n>=0} (-1)^n*log(1 - x/2^n)^n/n!.
a(n) ~ 2^(n^2) / n. - Vaclav Kotesovec, Oct 20 2020

A246900 Decimal expansion of the constant c = Sum_{n>=0} binomial(n-1 + 1/2^(n-1), n).

Original entry on oeis.org

2, 5, 5, 5, 0, 0, 2, 4, 8, 4, 3, 6, 1, 0, 1, 3, 6, 0, 8, 0, 4, 7, 0, 4, 9, 6, 9, 7, 9, 6, 2, 3, 9, 5, 2, 5, 1, 0, 2, 5, 0, 4, 1, 5, 1, 4, 8, 3, 9, 1, 6, 9, 2, 7, 7, 3, 0, 9, 1, 7, 8, 0, 6, 1, 3, 8, 7, 2, 3, 4, 0, 0, 5, 4, 1, 3, 1, 9, 7, 5, 9, 4, 6, 9, 9, 1, 0, 9, 8, 2, 0, 1, 5, 0, 0, 2, 7, 6
Offset: 1

Views

Author

Paul D. Hanna, Nov 29 2014

Keywords

Examples

			c = 2.55500248436101360804704969796239525102504151483916927730...
where the constant is equal to the sum
c = 1 + binomial(1,1) + binomial(3/2,2) + binomial(9/4,3) + binomial(25/8,4) + binomial(65/16,5) + binomial(161/32,6) +...+ binomial(n-1 + 1/2^(n-1), n) +...
which may be written as
c = 1 + 2/2 + 6/2^4 + 60/2^9 + 2550/2^16 + 476476/2^25 + 384115732/2^36 + 1305385229720/2^49 + 18382187112952806/2^64 +...+ A224883(n)*x^n/2^(n^2) +...
The constant also equals the logarithmic sum
c = 1 + 2*log(2) + 4*log(4/3)^2/2! + 8*log(8/7)^3/3! + 16*log(16/15)^4/4! + 32*log(32/31)^5/5! + 64*log(64/63)^6/6! +...+ (-2)^n*log(1 - 1/2^n)^n/n! +...
which converges rather quickly.
		

Crossrefs

Cf. A224883.

Programs

  • PARI
    /* By definition: */
    \p128
    {c=suminf(n=0,binomial(n-1 + 1/2^(n-1), n)*1.)}
    {a(n)=floor(10^n*c)%10}
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    /* By a logarithmic identity (accelerated series): */
    \p1024
    {c=1+suminf(n=1, (-2)^n*log(1 - 1/2^n)^n / n!)}
    {a(n)=floor(10^n*c)%10}
    for(n=0,1000,print1(a(n),", "))

Formula

c = Sum_{n>=0} (-2)^n * log(1 - 1/2^n)^n / n!.
c = Sum_{n>=0} A224883(n) / 2^(n^2), where A224883(n) = (2^n/n!) * Product_{k=0..n-1} (2^(n-1)*k + 1).
Showing 1-2 of 2 results.