A224888 Primes of the form p^2 + (q-p)^2, where p and q are consecutive primes.
5, 13, 29, 293, 997, 6257, 11897, 18773, 19421, 52457, 73477, 109597, 120413, 167381, 192737, 218233, 249017, 292717, 333029, 361237, 398261, 466553, 502781, 546137, 552113, 591377, 635353, 683933, 687341, 704117, 737897, 885517, 966353, 982117, 1018097, 1079621
Offset: 1
Keywords
Examples
3 and 5 are consecutive primes and 3^2 + (5-3)^2 = 9 + 4 = 13 is prime, so 13 is in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A093343.
Programs
-
Mathematica
Select[Table[Prime[n]^2 + (Prime[n + 1] - Prime[n])^2, {n, 200}], PrimeQ] (* Alonso del Arte, Jul 29 2013 *)
-
PARI
p=2;forprime(q=3,1e4,if(isprime(t=p^2+(q-p)^2),print1(t", "));p=q) \\ Charles R Greathouse IV, Jul 24 2013
Formula
c(x) is O( sqrt(x/log x) / log x ), where c(x) is the counting function, the number of terms less than x.
Extensions
a(5), a(9)-a(36) from Charles R Greathouse IV, Jul 24 2013
Comments