A224900 a(n) = n!*((n+1)!)^2.
1, 4, 72, 3456, 345600, 62208000, 18289152000, 8193540096000, 5309413982208000, 4778472583987200000, 5781951826624512000000, 9158611693373227008000000, 18573664514160904372224000000, 47325697182081984340426752000000, 149075946123558250672344268800000000
Offset: 0
Crossrefs
Cf. A172492.
Programs
-
Mathematica
Table[n!*((n+1)!)^2,{n,0,15}]
-
Python
from math import factorial def A224900(n): return factorial(n)**3*(n+1)**2 # Chai Wah Wu, Apr 22 2024
Formula
G.f. of hypergeometric type: Sum_{n>=0} a(n)*z^n/(n!)^3 = (1+z)/(1-z)^3.
Integral representation as n-th moment of a positive function w(x) on a positive half axis (solution of the Stieltjes moment problem), in Maple notation: a(n) = int(x^n*w(x),x=0..infinity), n>=0, where w(x) = MeijerG([[],[]],[[1,1,0]],[]],x), w(0)=1, limit(w(x),x=infinity)=0.
w(x) is monotonically decreasing over (0,infinity).
The Meijer G function above cannot be represented by any other known special function.
This solution of the Stieltjes moment problem is not unique.
Asymptotics: a(n) -> (1/960)*sqrt(2)*Pi^(3/2)*(1920*n^3 + 4320*n^2 + 2940*n + 589)*exp(-3*n)*n^(1/2 + 3*n), for n->oo.
a(n) = A172492(n)*(n+1).
a(n) - n*(n+1)^2*a(n-1) = 0. - R. J. Mathar, Jul 28 2013
Comments