cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225958 O.g.f.: exp( Sum_{n>=1} (sigma(2*n^3) - sigma(n^3)) * x^n/n ).

Original entry on oeis.org

1, 2, 10, 44, 134, 468, 1524, 4584, 13862, 40566, 114880, 321052, 879092, 2360156, 6248864, 16297384, 41902454, 106437600, 267149022, 662979572, 1628437160, 3960377672, 9541519732, 22786066280, 53958062564, 126750346970, 295476011176, 683776368416, 1571299804688
Offset: 0

Views

Author

Paul D. Hanna, May 21 2013

Keywords

Comments

Compare to the Jacobi theta_3 function:
1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).
Here sigma(n) = A000203(n), the sum of the divisors of n.

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 44*x^3 + 134*x^4 + 468*x^5 + 1524*x^6 +...
where
log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 + 114*x^7/7 + 128*x^8/8 + 242*x^9/9 + 248*x^10/10 + 266*x^11/11 +...+ A054785(n^3)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^3)-sigma(m^3))*x^m/m)+x^2*O(x^n)), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

O.g.f.: exp( Sum_{n>=1} A054785(n^3)*x^n/n ).
Logarithmic derivative equals A225959.

A224903 a(n) = sigma(2*n^4) - sigma(n^4).

Original entry on oeis.org

2, 32, 242, 512, 1562, 3872, 5602, 8192, 19682, 24992, 32210, 61952, 61882, 89632, 189002, 131072, 177482, 314912, 275122, 399872, 677842, 515360, 585122, 991232, 976562, 990112, 1594322, 1434112, 1465082, 3024032, 1908610, 2097152, 3897410, 2839712, 4375162, 5038592, 3852442
Offset: 1

Views

Author

Paul D. Hanna, Jul 24 2013

Keywords

Comments

Here sigma(n) = A000203(n), the sum of the divisors of n.

Examples

			L.g.f.: L(x) = 2*x + 32*x^2/2 + 242*x^3/3 + 512*x^4/4 + 1562*x^5/5 +...
where exponentiation yields the g.f. of A224902:
exp(L(x)) = 1 + 2*x + 18*x^2 + 114*x^3 + 450*x^4 + 2298*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 2*n^4] - DivisorSigma[1, n^4]; Array[a, 50] (* Amiram Eldar, Mar 17 2024 *)
  • PARI
    {a(n)=sigma(2*n^4)-sigma(n^4)}
    for(n=1, 30, print1(a(n), ", "))

Formula

a(n) = A054785(n^4).
Logarithmic derivative of A224902.
Sum_{k=1..n} a(k) ~ c * n^5, where c = (31/115) * zeta(5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^5) = 0.51764417195990550114... . - Amiram Eldar, Mar 17 2024
Showing 1-2 of 2 results.