cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224911 Greatest prime dividing A190339(n).

Original entry on oeis.org

2, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 0

Views

Author

Paul Curtz, Apr 19 2013

Keywords

Comments

It appears that a(n) = A060308(n+1), verified for n <=420. - R. J. Mathar, Apr 28 2013
This appears to be a sequence of nondecreasing primes containing each prime at least once.
We might also consider a sequence b(n) defined by 2 followed by A006094(n): 2, 6, 15, 35, 77, 143, 221, ... . A190339(n) is also divisible by a stuttered version of b(n), namely by the sequence 2, 6, 15, 35, 35, 77, 143, 143, ... .

Examples

			a(0) = 6/2 = 3, a(1) = 15/3 = 5, a(2) = 105/15 = 7, a(3) = 105/15 = 7, a(4) = 231/21 = 11.
		

Crossrefs

Programs

  • Maple
    A224911 := proc(n)
        A006530(A190339(n)) ;
    end proc: # R. J. Mathar, Apr 25 2013
  • Mathematica
    nmax = 67; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; FactorInteger[#][[-1, 1]]& /@ Denominator[Diagonal[diff]] (* Jean-François Alcover, Mar 03 2014 *)

Formula

a(n) = A006530(A190339(n)).