A224912 Numbers m for which Sum_{i=1..k} (p(i)/(p(i)-1)) + Product_{i=1..k} (p(i)/(p(i)-1)) is an integer, where p(i) are the k prime factors of m (with multiplicity).
2, 3, 4, 8, 16, 32, 36, 64, 72, 108, 128, 144, 200, 256, 288, 396, 512, 528, 576, 588, 1024, 1040, 1152, 1296, 2000, 2048, 2304, 2320, 2400, 2592, 3888, 4096, 4160, 4608, 4752, 4800, 5184, 5600, 6552, 7200, 8192, 8448, 9216, 9600, 9936, 10368, 11316, 12000
Offset: 1
Keywords
Examples
Prime factors of 11316 are 2^2, 3, 23 and 41. Sum_{i=1..5} (p(i)/(p(i)-1)) = 2*(2/(2-1)) + 3/(3-1) + 23/(23-1) + 41/(41-1) = 3331/440. Sroduct_{i=1..5} (p(i)/(p(i)-1)) = 2*(2/(2-1)) * 3/(3-1) * 23/(23-1) * 41/(41-1) = 2829/440. Their sum is an integer: 3331/440 + 2829/440 = 14.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..200
Comments