A224915 a(n) = Sum_{k=0..n} n XOR k where XOR is the bitwise logical exclusive-or operator.
0, 1, 5, 6, 22, 23, 27, 28, 92, 93, 97, 98, 114, 115, 119, 120, 376, 377, 381, 382, 398, 399, 403, 404, 468, 469, 473, 474, 490, 491, 495, 496, 1520, 1521, 1525, 1526, 1542, 1543, 1547, 1548, 1612, 1613, 1617, 1618, 1634, 1635, 1639, 1640, 1896, 1897, 1901, 1902, 1918
Offset: 0
Examples
a(2) = (0 xor 2) + (1 xor 2) = 2 + 3 = 5.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
read("transforms"): A051933 := proc(n,k) XORnos(n,k) ; end proc: A224915 := proc(n) add(A051933(n,k),k=0..n) ; end proc: # R. J. Mathar, Apr 26 2013 # second Maple program: with(MmaTranslator[Mma]): seq(add(BitXor(n,i),i=0..n),n=0..60); # Ridouane Oudra, Dec 09 2020
-
Mathematica
Array[Sum[BitXor[#, k], {k, 0, #}] &, 53, 0] (* Michael De Vlieger, Dec 09 2020 *)
-
PARI
a(n) = sum(k=0, n, bitxor(n, k)); \\ Michel Marcus, Jun 08 2019
-
PARI
a(n) = (3*fromdigits(binary(n),4) - n) >>1; \\ Kevin Ryde, Dec 17 2021
-
Python
for n in range(59): s = 0 for k in range(n): s += n ^ k print(s, end=',')
-
Python
def A224915(n): return 3*int(bin(n)[2:],4)-n>>1 # Chai Wah Wu, Aug 21 2023
Formula
a(n) = Sum_{j=1..n} 4^(v_2(j)), where v_2(j) is the exponent of highest power of 2 dividing j. - Ridouane Oudra, Jun 08 2019
a(n) = n + 3*Sum_{j=1..floor(log_2(n))} 4^(j-1)*floor(n/2^j), for n>=1. - Ridouane Oudra, Dec 09 2020
From Kevin Ryde, Dec 17 2021: (Start)
a(2*n+b) = 4*a(n) + n + b where b = 0 or 1.
a(n) = (A001196(n) - n)/2.
(End)