cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224928 Numbers of pairs {x, y} such that x <= y and triangular(x) + triangular(y) = 2^n.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 1, 0, 3, 0, 2, 0, 4, 0, 1, 0, 8, 0, 2, 0, 4, 0, 4, 0, 8, 0, 2, 0, 24, 0, 2, 0, 8, 0, 8, 0, 8, 0, 2, 0, 32, 0, 4, 0, 16, 0, 4, 0, 32, 0, 4, 0, 32, 0, 4, 0, 4, 0, 8, 0, 16, 0, 2, 0, 32, 0, 6, 0, 48, 0, 16, 0, 16, 0, 8, 0, 384, 0, 4, 0, 16, 0, 16, 0, 16, 0, 8, 0, 768, 0, 2, 0, 8, 0, 4, 0, 32, 0, 32, 0, 256
Offset: 0

Views

Author

Alex Ratushnyak, May 08 2013

Keywords

Comments

Conjectures:
1. a(n) = 0 for odd n > 1.
2. a(n) is even for even n > 14.

Examples

			2^1 = 1 + 1, the only representation of 2 as a sum of two triangular numbers, so a(1)=1.
2^4 = 16 = 1+15 = 6+10, two representations, so a(4) = 2.
2^8 = 256 = 3+253 = 66+190 = 120+136, so a(8) = 3.
2^12 = 4096 = 1+4095 = 91+4005 = 1540+2556 = 2016+2080, so a(12) = 4.
		

Crossrefs

Programs

  • C
    #include 
    #include 
    typedef unsigned long long U64;
    U64 isTriangular(U64 a) {      // ! Must be a <= (1<<63)
        U64 s = sqrt(a*2);
        if (a>=(1ULL<<63)) {
            if (a==(1ULL<<63)) return 0;
            printf("Error: a = %llu\n", a), exit(1);
        }
        return (s*(s+1)/2 == a);
    }
    int main() {
      U64 c, n, x, tx;
      for (n = 1; n; n+=n) {
        for (c = x = tx = 0; tx*2 <= n; ++x, tx+=x)
          if (isTriangular(n - tx))
            ++c;//, printf("(%llu+%llu) ", tx, n-tx);
        printf("%llu, ", c);
      }
      return 0;
    }
    
  • PARI
    A008441(n) = if(!n,n,sumdiv(4*n + 1, d, (d%4==1) - (d%4==3)));
    A052343(n) = if(!n,1,my(u=A008441(n)); ((u\2)+(u%2)));
    A224928(n) = A052343(2^n); \\ Antti Karttunen, May 24 2021

Formula

a(n) = A052343(2^n).

Extensions

More terms from Antti Karttunen, May 24 2021