A224930 Numbers n such that n divides the concatenation of all divisors in descending order.
1, 561, 1703, 2883, 11623, 14721, 32431, 205119, 361767, 826471901, 3747204067, 17463443163, 404345080971, 573488405493, 5623233497397
Offset: 1
Examples
Divisors of 561 are 1, 3, 11, 17, 33, 51, 187, 561 and 5611875133171131 / 561 = 10003342483371. Divisors of 1703 are 1, 13, 131, 1703 and 1703131131 / 1703 = 1000077.
Crossrefs
Cf. A069872.
Programs
-
Maple
with(numtheory); A224930:=proc(q) local a,b,c,d,f,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); b:=nops(a); c:=a[b]; for k from 1 to b-1 do d:=c; f:=0; while d>0 do f:=f+1; d:=trunc(d/10); od; c:=c+a[k+1]*10^f; od; if type(c/n,integer) then print(n); fi; od; end: A224930 (10^6); # Paolo P. Lava, May 02 2013
-
Mathematica
Select[Range[10^6/2]*2-1, Mod[ FromDigits@ Flatten@ IntegerDigits[ Reverse@ Divisors@ #], #] == 0 &] (* Giovanni Resta, May 05 2013 *)
-
PARI
isok(k) = {my(s = "", d = Vecrev(divisors(k))); for (j=1, #d, s = concat(s, Str(d[j]));); eval(k) % k == 0;} \\ Michel Marcus, Feb 14 2020
Extensions
a(10) from Donovan Johnson, May 05 2013
a(11)-a(12) from Giovanni Resta, May 05 2013
a(13)-a(14) from Giovanni Resta, May 10 2013
a(15) from Giovanni Resta, Feb 14 2020
Comments