A224953 Number of ways a digit can be appended or prepended to n and form a prime.
4, 9, 3, 9, 3, 3, 2, 9, 2, 6, 4, 6, 1, 7, 1, 2, 2, 5, 1, 9, 0, 4, 3, 6, 1, 2, 2, 6, 2, 5, 1, 8, 0, 5, 2, 2, 1, 6, 2, 6, 2, 6, 1, 7, 2, 1, 3, 6, 1, 5, 2, 3, 2, 5, 2, 1, 2, 8, 1, 6, 2, 7, 0, 6, 3, 2, 1, 7, 1, 4, 2, 5, 1, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 7, 0, 3, 1
Offset: 0
Examples
a(0) = 4 because there are 4 ways to concatenate a digit to 0 to produce a prime number: 02, 03, 05, and 07. a(3) = 9 because a digit can be concatenated to 3 in 9 ways to produce a prime number: 03, 13, 23, 43, 53, 73, 83, 31, and 37.
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 0..9999
- Christian N. K. Anderson, Primes formed by appending digits to n for n = 0..9999
Crossrefs
Programs
-
Mathematica
Table[num = IntegerDigits[n]; cnt = 0; Do[If[PrimeQ[FromDigits[Prepend[num, k]]], cnt++], {k, 0, 9}]; Do[If[PrimeQ[FromDigits[Append[num, k]]], cnt++], {k, 0, 9}]; cnt, {n, 0, 86}] (* T. D. Noe, Apr 20 2013 *)
-
R
sapply(1:100, function(x) sum(sapply(as.numeric(c(paste0(0:9,x), paste0(x,c(1,3,7,9)))), is_prime ))) # Christian N. K. Anderson, Apr 30 2024
Comments