cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224959 Number of compositions [p(1), p(2), ..., p(k)] of n such that p(j) - p(j-1) <= 2.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 105, 199, 378, 716, 1358, 2572, 4873, 9229, 17480, 33102, 62688, 118709, 224795, 425676, 806068, 1526371, 2890338, 5473125, 10363871, 19624925, 37161558, 70368705, 133249369, 252319408, 477788980, 904735349, 1713195705, 3244086145
Offset: 0

Views

Author

Joerg Arndt, Apr 21 2013

Keywords

Examples

			There are a(5) = 15 such compositions of 5:
01:  [ 1 1 1 1 1 ]
02:  [ 1 1 1 2 ]
03:  [ 1 1 2 1 ]
04:  [ 1 1 3 ]
05:  [ 1 2 1 1 ]
06:  [ 1 2 2 ]
07:  [ 1 3 1 ]
08:  [ 2 1 1 1 ]
09:  [ 2 1 2 ]
10:  [ 2 2 1 ]
11:  [ 2 3 ]
12:  [ 3 1 1 ]
13:  [ 3 2 ]
14:  [ 4 1 ]
15:  [ 5 ]
(the single forbidden composition is [ 1 4 ]).
		

Crossrefs

Cf. A003116 (compositions such that p(j) - p(j-1) <= 1).
Cf. A225084 (triangle: compositions of n such that max(p(j) - p(j-1)) = k).
Cf. A225085 (triangle: compositions of n such that max(p(j) - p(j-1)) <= k).

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, add(b(n-j, max(1, j-2)), j=i..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..40);  # Alois P. Heinz, May 02 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, Max[1, j-2]], {j, i, n}]];
    a[n_] := b[n, 1];
    a /@ Range[0, 40] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n, where d=1.893587506319686491635881459546948770530553555112342985931092896452453511... and c=0.6398882559654423774981963082429746674258714212085034829366885993226... - Vaclav Kotesovec, May 01 2014