A224959 Number of compositions [p(1), p(2), ..., p(k)] of n such that p(j) - p(j-1) <= 2.
1, 1, 2, 4, 8, 15, 29, 55, 105, 199, 378, 716, 1358, 2572, 4873, 9229, 17480, 33102, 62688, 118709, 224795, 425676, 806068, 1526371, 2890338, 5473125, 10363871, 19624925, 37161558, 70368705, 133249369, 252319408, 477788980, 904735349, 1713195705, 3244086145
Offset: 0
Keywords
Examples
There are a(5) = 15 such compositions of 5: 01: [ 1 1 1 1 1 ] 02: [ 1 1 1 2 ] 03: [ 1 1 2 1 ] 04: [ 1 1 3 ] 05: [ 1 2 1 1 ] 06: [ 1 2 2 ] 07: [ 1 3 1 ] 08: [ 2 1 1 1 ] 09: [ 2 1 2 ] 10: [ 2 2 1 ] 11: [ 2 3 ] 12: [ 3 1 1 ] 13: [ 3 2 ] 14: [ 4 1 ] 15: [ 5 ] (the single forbidden composition is [ 1 4 ]).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3607
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, max(1, j-2)), j=i..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..40); # Alois P. Heinz, May 02 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, Max[1, j-2]], {j, i, n}]]; a[n_] := b[n, 1]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n, where d=1.893587506319686491635881459546948770530553555112342985931092896452453511... and c=0.6398882559654423774981963082429746674258714212085034829366885993226... - Vaclav Kotesovec, May 01 2014