A225010 T(n,k) = number of n X k 0..1 arrays with rows unimodal and columns nondecreasing.
2, 4, 3, 7, 9, 4, 11, 22, 16, 5, 16, 46, 50, 25, 6, 22, 86, 130, 95, 36, 7, 29, 148, 296, 295, 161, 49, 8, 37, 239, 610, 791, 581, 252, 64, 9, 46, 367, 1163, 1897, 1792, 1036, 372, 81, 10, 56, 541, 2083, 4166, 4900, 3612, 1716, 525, 100, 11, 67, 771, 3544, 8518, 12174, 11088, 6672, 2685, 715, 121, 12
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..0..0....0..1..0..0....0..0..0..0....1..1..1..1....0..0..0..0 ..0..0..0..0....0..1..1..0....0..0..0..0....1..1..1..1....1..1..0..0 ..0..0..0..1....1..1..1..0....1..1..0..0....1..1..1..1....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..5304
Crossrefs
Programs
-
Maple
T:= (n, k)-> add(binomial(k+2*j-1, 2*j), j=0..n): seq(seq(T(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Sep 22 2013
-
Mathematica
T[n_, k_] := Sum[Binomial[k + 2*j - 1, 2*j], {j, 0, n}]; Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 07 2016, after Alois P. Heinz *)
Formula
Empirical: columns k=1..7 are polynomials of degree k.
Empirical: rows n=1..7 are polynomials of degree 2n.
T(n,k) = Sum_{j=0..n} C(k+2*j-1,2*j). - Alois P. Heinz, Sep 22 2013
Comments