A225038 Numbers n such that at least one member of Collatz (3x+1) trajectory of n is >= n^2.
1, 3, 7, 27, 31, 41, 47, 54, 55, 62, 63, 71, 73, 82, 83, 91, 94, 95, 6631675, 7460635, 319804831, 379027947, 426406441, 479707247, 568541921, 598957743, 639609662, 639609663, 719560871, 758055894, 758055895, 852812882, 852812883, 898436615, 959414494, 959414495, 1010741193, 1079341307, 1137083842, 1137083843, 1410123943
Offset: 1
Keywords
Examples
3 is a member since both 16 and 10 both belong to Collatz trajectory of 3 that are >= 3^2 = 9.
Links
- Eric Roosendaal, 3x+1 path records
Programs
-
Mathematica
Coll[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Max[Coll[n]] >= n*n, AppendTo[t, n]], {n, 1000}]; t
Formula
Numbers n such that A025586(n) >= n^2.
Extensions
Extended by T. D. Noe, Apr 25 2013
Comments