A225054 Triangle read by rows: Eulerian numbers T(n,k) = A008292(n,k) reduced mod n+1.
0, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 7, 1, 7, 4, 7, 1, 7, 1, 1, 3, 0, 2, 4, 4, 2, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 11, 9, 6, 6, 6
Offset: 0
Examples
Triangle begins: {0}, {1,1}, {1,1,1}, {1,3,3,1}, {1,1,1,1,1}, {1,3,2,2,3,1}, {1,1,1,1,1,1,1}, {1,7,5,3,3,5,7,1}, {1,7,1,7,4,7,1,7,1}, {1,3,0,2,4,4,2,0,3,1}, {1,1,1,1,1,1,1,1,1,1,1}, {1,3,11,9,6,6,6,6,9,11,3,1}, {1,1,1,1,1,1,1,1,1,1,1,1,1}, ...
Links
- Eric Weisstein's World of Mathematics, Eulerian Number
Programs
-
Mathematica
Flatten[Table[Table[Mod[Eulerian[n+1,m],n+1],{m,0,n}],{n,0,12}]]
Formula
T(n,m) = Eulerian(n+1,m) mod (n+1).
Comments