cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225055 Irregular triangle which lists the three positions of 2*n-1 in A060819 in row n.

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 5, 10, 20, 7, 14, 28, 9, 18, 36, 11, 22, 44, 13, 26, 52, 15, 30, 60, 17, 34, 68, 19, 38, 76, 21, 42, 84, 23, 46, 92, 25, 50, 100, 27, 54, 108, 29, 58, 116, 31, 62, 124, 33, 66, 132, 35, 70, 140, 37, 74, 148
Offset: 1

Views

Author

Paul Curtz, Apr 26 2013

Keywords

Comments

There are no multiples of 8 in the triangle.
A047592 contains a sorted list of all elements of the triangle.
The triangle is a member of a family of triangles with parameter k that list the k positions of 2*n-1: 2*n-1 in A000027 (k=1), A043547 the k=2 positions in A026741, the triangle 1,2,4,8; 3,6,12,24;... with the k=4 positions in A106609, or the triangle 1,2,4,8,16; 3,6,12,24,48;... with the k=5 positions in A106617.

Examples

			1, 2, 4;  # 1 at A060819(1), A060819(2) and A060819(4)
3, 6, 12;  # 3 at A060819(3), A060819(6) and A060819(12)
5, 10, 20;
7, 14, 28;
9, 18, 36;
11, 22, 44;
13, 26, 52;
15, 30, 60;
		

Crossrefs

Programs

  • Mathematica
    numberOfTriplets = 19; A060819 = Table[n/GCD[n, 4], {n, 1, 8*numberOfTriplets}]; Table[Position[A060819, 2*n-1], {n, 1, numberOfTriplets}] // Flatten (* Jean-François Alcover, Apr 30 2013 *)

Formula

T(n,1) = 2*n-1. T(n,2) = 4*n-2. T(n,3) = 8*n-4.