A225068 Least octagonal (8-gonal) number that is the product of n octagonal numbers greater than 1.
8, 1408, 2165800, 37333296, 19384601600, 69370076160, 69370076160, 56288711711232000, 7917914554368000000, 199449790781142859776
Offset: 1
Examples
Let oct(n) = n*(3n-2). Then a(1) = 8 = oct(2). a(2) = 1408 = oct(22) = oct(2) * oct(8). a(3) = 2165800 = oct(850) = oct(4) * oct(5) * oct(17). a(4) = 37333296 = oct(3528) = oct(3)^2 * oct(8) * oct(13). a(5) = 19384601600 = oct(80384) = oct(2)^2 * oct(5) * oct(14) * oct(53). a(6) = 69370076160 = oct(152064) = oct(3)^3 * oct(4) * oct(7) * oct(22).
Links
- Lars Blomberg, Table of n, a(n) with solutions for n=1..10
Crossrefs
Extensions
Corrected a(4) and added a(7)-a(10) by Lars Blomberg, Sep 21 2013