cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225082 Centrally deletable primes.

Original entry on oeis.org

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 229, 233, 239, 263, 269, 283, 293, 307, 311, 317, 331, 337, 347, 367, 397, 401, 421, 431, 433, 443, 457, 461, 463, 467, 487, 491, 503, 509, 523, 563
Offset: 1

Views

Author

Keywords

Comments

Prime numbers that remain primes when their central digit is (or two central digits are) deleted.
At the 1886th prime number (16229), there are exactly 943 centrally deletable primes, and 943 that become composites. It appears that there are always more non-deletable primes thereafter.
Subset of A080603 and of A077359.

Examples

			a(5) = 1(1)3, and 13 is a prime.
		

Crossrefs

Programs

  • Mathematica
    dcd[n_] := Block[{d = IntegerDigits@n, z}, z = Length@d; FromDigits@ Delete[d, Floor[(z + {{1}, {2}})/2]]]; Select[Prime@ Range@ 103, PrimeQ@ dcd@ # &] (* Giovanni Resta, Apr 29 2013 *)
  • R
    library(gmp)
    sumsubstrpow<-function(n) {
    no0<-function(s){ while(substr(s,1,1)=="0" && nchar(s)>1) s=substr(s,2,nchar(s)); s}
    tot=as.bigz(0); s=as.character(n); len=nchar(s)
    for(i in 1:len) for(j in i:len) tot=tot+as.bigz(no0(substr(s,i,j)))^(j-i+1)
    tot
    }
    #recursive
    n=as.bigz(10); for(y in 1:4) n[y+1]=sumsubstrpow(n[y])