cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225089 a(n) = floor(2^A006666(m)/3^A006667(m)) - m, where m = 2n + 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 1, 2, 1, 2, 1, 0, 1, 4, 3, 1, 0, 3, 2, 4, 4, 2, 5, 5, 4, 3, 5, 0, 6, 3, 2, 8, 7, 6, 8, 2, 7, 0, 10, 6, 5, 4, 7, 8, 10, 9, 8, 4, 3, 10, 9, 11, 14, 9, 12, 7, 6, 10, 9, 0, 14, 13, 12, 7, 6, 5, 10, 17, 13, 15, 0, 13, 12, 16, 15, 5, 8
Offset: 1

Views

Author

Michel Lagneau, Apr 27 2013

Keywords

Comments

A006666 and A006667 are the number of halving and tripling steps to reach 1 in 3x+1 problem.
Properties of this sequence:
a(m) = 0 for m = A211981(m).

Examples

			a(9) = 3 because floor(2^A006666(19)/3^A006667(19)) - 19 = floor(2^14 /3^6) - 19 = floor(22.474622) - 19 = 22 - 19 = 3.
		

Crossrefs

Programs

  • Maple
    A:= proc(n) if type(n, 'even') then n/2; else 3*n+1 ; end if; end proc:
    B:= proc(n) a := 0 ; x := n ; while x > 1 do x := A(x) ; a := a+1 ; end do; a ; end proc:
    C:= proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2 ; else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
    D:= proc(n) C(n) ; end proc:
    A006666:= proc(n) B(n)- C(n) ; end:
    A006667:= proc(n) C(n)- D(n) ; end:
    G:= proc(n) floor(2^A006666 (n)/3^A006667 (n)) ; end:
    for i from 1 to 100 do: printf(`%d, `, G(i)-i):od:
  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 100; t = {}; n = 0; While[Length[t] < nn, n++; c = Collatz[n]; ev = Length[Select[c, EvenQ]]; od = Length[c] - ev - 1; AppendTo[t, Floor[2^ev/3^od]-n]]; t