A225104 Numbers that can be represented as a sum of two distinct nontrivial prime powers in three or more ways.
370, 650, 2210, 3770, 5330, 6290, 7202, 10370, 10730, 11570, 12410, 12818, 13130, 14690, 15170, 15650, 16250, 16490, 18122, 18530, 19370, 19610, 21170, 22490, 24050, 24650, 25010, 26690, 28730, 29930, 30290, 30770, 31610, 32810, 33410, 34970, 36482, 36490
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..600
Programs
-
Maple
isA025475not1 := proc(n) if n <= 1 then false; elif isprime(n) then false; elif nops(numtheory[factorset](n)) = 1 then true; else false; end if; end proc: A025475not1 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if isA025475not1(a) then return a; end if; end do: end if; end proc: A225104w := proc(n) local a,i,ppi,ppj ; a := 0 ; for i from 1 do ppi := A025475not1(i) ; if ppi >= n/2 then break; end if; ppj := n-ppi ; if isA025475not1(ppj) then a := a+1 ; end if; end do: a ; end proc: for n from 1 do if A225104w(n) >= 3 then print(n) ; end if; end do: # R. J. Mathar, Jun 13 2013
-
Mathematica
nn = 36490; p = Sort[Flatten[Table[Prime[n]^i, {n, PrimePi[Sqrt[nn]]}, {i, 2, Log[Prime[n], nn]}]]]; Transpose[Sort[Select[Tally[Flatten[Table[p[[i]] + p[[j]], {i, Length[p] - 1}, {j, i + 1, Length[p]}]]], #[[1]] <= nn && #[[2]] > 2 &]]][[1]] (* T. D. Noe, Apr 29 2013 *)
Comments