A225124 a(n) = least number k such that 2^n is highest in Collatz(3x+1) trajectory of k.
1, 2, 4, 8, 3, 32, 21, 128, 85, 512, 151, 2048, 1365, 8192, 5461, 32768, 14563, 131072, 87381, 524288, 349525, 2097152, 932067, 8388608, 5592405, 33554432, 22369621, 134217728, 26512143, 536870912, 357913941
Offset: 0
Keywords
Examples
a(4)=3 since 3 is the least number such that largest member of Collatz(3 x + 1) trajectory of 3 is 2^4 = 16.
Programs
-
Haskell
a225124 = (+ 1) . fromJust . (`elemIndex` a025586_list) . a000079 -- Reinhard Zumkeller, Apr 30 2013
-
Mathematica
Coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3*#+1]&,n,#>1 &]; t={}; Do[i=1; While[Max[Coll[i]] != 2^n, i++]; AppendTo[t, i], {n,0,25}]; t