cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261068 Decimal expansion of J_4 = Integral_{0..Pi/2} x^4/sin(x) dx.

Original entry on oeis.org

2, 0, 5, 3, 1, 6, 0, 7, 3, 1, 4, 8, 0, 5, 9, 1, 6, 6, 8, 9, 5, 6, 5, 4, 1, 2, 9, 6, 0, 2, 6, 5, 1, 1, 3, 6, 6, 8, 5, 6, 5, 5, 8, 8, 4, 4, 5, 7, 2, 3, 9, 5, 6, 9, 4, 3, 8, 5, 1, 8, 8, 9, 2, 7, 6, 5, 2, 2, 9, 2, 3, 4, 2, 3, 7, 9, 1, 9, 1, 7, 7, 1, 7, 6, 7, 7, 6, 9, 8, 0, 7, 8, 9, 0, 1, 7, 4, 2, 6, 7, 3, 2
Offset: 1

Views

Author

Jean-François Alcover, Aug 08 2015

Keywords

Examples

			2.05316073148059166895654129602651136685655884457239569438518892765...
		

Crossrefs

Cf. A006752 (J_1 / 2 = Catalan's constant), A245073 (J_2), A225125 (J_3), A261069 (J_5).

Programs

  • Mathematica
    J4 = Catalan*Pi^3 - 7*I*Pi^5/480 - 24*I*Pi*PolyLog[4, -I] + 93*Zeta[5]/2; RealDigits[J4 // Re, 10, 102] // First

Formula

J_4 = Catalan*Pi^3 - 7*i*Pi^5/480 - 24*i*Pi*PolyLog(4, -i) + (93*zeta(5))/2.
Also equals Catalan*Pi^3 + (1/64)*(Pi*(PolyGamma(3, 3/4) - PolyGamma(3, 1/4)) + 2976*Zeta(5));

A261069 Decimal expansion of J_5 = Integral_{0..Pi/2} x^5/sin(x) dx.

Original entry on oeis.org

2, 6, 3, 4, 3, 1, 8, 2, 9, 0, 5, 1, 8, 7, 5, 5, 1, 6, 2, 2, 1, 0, 3, 1, 5, 9, 6, 1, 2, 8, 4, 0, 5, 5, 0, 5, 5, 9, 4, 0, 9, 3, 4, 3, 5, 8, 9, 3, 1, 5, 5, 5, 8, 4, 2, 1, 2, 3, 2, 1, 2, 3, 6, 9, 5, 8, 7, 1, 8, 0, 4, 6, 4, 0, 9, 5, 7, 1, 9, 1, 2, 7, 0, 2, 5, 2, 4, 0, 7, 0, 9, 7, 8, 2, 6, 6, 0, 5, 6, 2, 9, 8, 6
Offset: 1

Views

Author

Jean-François Alcover, Aug 08 2015

Keywords

Examples

			2.634318290518755162210315961284055055940934358931555842123212369587...
		

Crossrefs

Cf. A006752 (J_1 / 2 = Catalan's constant), A245073 (J_2), A225125 (J_3), A261068 (J_4).

Programs

  • Mathematica
    J5 = (5*Catalan*Pi^4)/8 - (29*I*Pi^6)/2016 - 30*I*Pi^2*PolyLog[4, -I] +
         240*I*PolyLog[6, -I]; RealDigits[J5 // Re, 10, 103] // First
    RealDigits[NIntegrate[x^5/Sin[x],{x,0,Pi/2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 09 2023 *)

Formula

J_5 = (5*Catalan*Pi^4)/8 - (29*i*Pi^6)/2016 - 30*i*Pi^2*PolyLog(4, -i) + 240*i*PolyLog(6, -i).
Also equals (40*Pi^2*(32*Catalan*Pi^2 - PolyGamma(3, 1/4) + PolyGamma(3, 3/4)) + PolyGamma(5, 1/4) - PolyGamma(5, 3/4))/2048.
Showing 1-2 of 2 results.