A225150 Unitary hyperperfect numbers.
6, 21, 40, 52, 60, 90, 288, 301, 657, 697, 1333, 1909, 2041, 2176, 3856, 3901, 5536, 6517, 15025, 24601, 26977, 30105, 87360, 96361, 105301, 130153, 163201, 250321, 275833, 296341, 389593, 486877, 495529, 524961, 542413, 808861, 1005421, 1005649, 1055833
Offset: 1
Keywords
Examples
21 is in the sequence because 1 + k(usigma(21) - 21 - 1) = 1 + 2(32 - 21 - 1) = 21 where k = 2 and usigma(21) = A034448 (21) = 32.
References
- J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses 2008, Entry 288 p. 74.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
- Peter Hagis, Jr., Unitary Hyperperfect Numbers, Mathematics of Computation, Vol. 36, No. 153 (1981), pp. 299-301.
- Eric Weisstein's World of Mathematics, Hyperperfect Number
- Wikipedia, Hyperperfect number
Programs
-
Maple
with(numtheory) :for n from 1 to 100000 do :it:=1:x:=divisors(n):n1:=nops(x):s:=1:for i from 2 to n1 do:d:=x[i]:if gcd(d,n/d)=1 then s:=s+d:else fi:od: ii:=0:for k from 1 to 2000 while (ii=0) do:z:=1+k*(s-n-1):if z=n then ii:=1:printf(`%d, `,n):else fi:od: od:
-
Mathematica
usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; hpnQ[n_]:=Module[{c= usigma[n]-n-1}, c>0&&IntegerQ[(n-1)/c]]; Select[Range[2, 1100000], hpnQ]
Comments