cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225150 Unitary hyperperfect numbers.

Original entry on oeis.org

6, 21, 40, 52, 60, 90, 288, 301, 657, 697, 1333, 1909, 2041, 2176, 3856, 3901, 5536, 6517, 15025, 24601, 26977, 30105, 87360, 96361, 105301, 130153, 163201, 250321, 275833, 296341, 389593, 486877, 495529, 524961, 542413, 808861, 1005421, 1005649, 1055833
Offset: 1

Views

Author

Michel Lagneau, Apr 30 2013

Keywords

Comments

A k-unitary hyperperfect number is an integer n for which the equality n = 1 + k(usigma(n) - n - 1) holds, where usigma(n) is the sum of all positive unitary divisors of n for some integer k. (See the definition of the k-hyperperfect number in the links, and the sequence A034897.)
A squarefree number is hyperperfect if, and only if this number is a unitary hyperperfect number.
In this sequence, the corresponding k are 1, 2, 3, 3, 1, 1, 7, 6, 8, 12, 18, 18, 12, 15, 15, 30, 27, 18, 24, 60, 48, 4, ...
Peter Hagis, Jr. calculated all the unitary hyperperfect numbers below 10^6. - Amiram Eldar, Aug 24 2018

Examples

			21 is in the sequence because 1 + k(usigma(21) - 21 - 1) = 1 + 2(32 - 21 - 1) = 21 where k = 2 and usigma(21) = A034448 (21) = 32.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses 2008, Entry 288 p. 74.

Crossrefs

Programs

  • Maple
    with(numtheory) :for n from 1 to 100000 do :it:=1:x:=divisors(n):n1:=nops(x):s:=1:for i from 2 to n1 do:d:=x[i]:if gcd(d,n/d)=1 then s:=s+d:else fi:od: ii:=0:for k from 1 to 2000 while (ii=0) do:z:=1+k*(s-n-1):if z=n then ii:=1:printf(`%d, `,n):else fi:od: od:
  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; hpnQ[n_]:=Module[{c= usigma[n]-n-1}, c>0&&IntegerQ[(n-1)/c]]; Select[Range[2, 1100000], hpnQ]