A225174 Square array read by antidiagonals: T(m,n) = greatest common unitary divisor of m and n.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1
Offset: 1
Examples
Array begins 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, ... 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, ... 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, ... 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, ... 1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 3, ... 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, ... ... The unitary divisors of 3 are 1 and 3, those of 6 are 1,2,3,6; so T(6,3) = T(3,6) = 3.
References
- M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.
Links
Programs
-
Maple
# returns the greatest common unitary divisor of m and n f:=proc(m,n) local i,ans; ans:=1; for i from 1 to min(m,n) do if ((m mod i) = 0) and (igcd(i,m/i) = 1) then if ((n mod i) = 0) and (igcd(i,n/i) = 1) then ans:=i; fi; fi; od; ans; end;
-
Mathematica
f[m_, n_] := Module[{i, ans=1}, For[i=1, i<=Min[m, n], i++, If[Mod[m, i]==0 && GCD[i, m/i]==1, If[Mod[n, i]==0 && GCD[i, n/i]==1, ans=i]]]; ans]; Table[f[m-n+1, n], {m, 1, 14}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 19 2018, translated from Maple *)
-
PARI
up_to = 20100; \\ = binomial(200+1,2) A225174sq(m,n) = { my(a=min(m,n),b=max(m,n),md=0); fordiv(a,d,if(0==(b%d)&&1==gcd(d,a/d)&&1==gcd(d,b/d),md=d)); (md); }; A225174list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A225174sq((a-(col-1)),col))); (v); }; v225174 = A225174list(up_to); A225174(n) = v225174[n]; \\ Antti Karttunen, Nov 28 2018
Formula
T(m,n) = T(n,m) = A165430(n,m).