A225204 Numerators of convergents to the square root of the golden ratio.
1, 4, 5, 14, 159, 491, 2614, 3105, 33664, 36769, 107202, 572779, 1825539, 9700474, 11526013, 32752500, 142536013, 175288513, 317824526, 810937565, 3561574786, 182451251651, 186012826437, 926502557399, 2039017941235, 5004538439869, 157179709577174
Offset: 0
Examples
1, 4/3, 5/4, 14/11, 159/125, 491/386, 2614/2055, 3105/2441, ... = A225204/A225205
Links
- I. J. Good, Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio (Condensed Version), Journal of the Operational Research Society, 43 (1992), 837-842.
- I. J. Good, Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio, The Fibonacci Quarterly 31.1 (1993):7-20.
Programs
-
Mathematica
Numerator[Convergents[Sqrt[GoldenRatio], 20]]
Formula
a(n) = A331692(n)*a(n-1) + a(n-2) for n >= 2. - Jianing Song, Aug 18 2022