A225205 Denominators of convergents to the square root of the golden ratio.
1, 3, 4, 11, 125, 386, 2055, 2441, 26465, 28906, 84277, 450291, 1435150, 7626041, 9061191, 25748423, 112054883, 137803306, 249858189, 637519684, 2799936925, 143434302859, 146234239784, 728371261995, 1602976763774, 3934324789543, 123567045239607
Offset: 0
Examples
1, 4/3, 5/4, 14/11, 159/125, 491/386, 2614/2055, 3105/2441, 33664/26465, ... = A225204/A225205
Links
- I. J. Good, Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio (Condensed Version), Journal of the Operational Research Society, 43 (1992), 837-842.
- I. J. Good, Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio, The Fibonacci Quarterly 31.1 (1993):7-20.
Programs
-
Mathematica
Denominator[Convergents[Sqrt[GoldenRatio], 20]]
Formula
a(n) = A331692(n)*a(n-1) + a(n-2) for n >= 2. - Jianing Song, Aug 18 2022