A221564 The number of FO4C3 moves required to restore a packet of n playing cards to its original state (order and orientation), where each move Flips Over the top four (4) as a unit and then Cuts three (3) cards from the top to bottom.
2, 4, 4, 4, 12, 12, 6, 24, 24, 8, 40, 40, 10, 60, 60, 12, 84, 84, 14, 112, 112, 16, 144, 144, 18, 180, 180, 20, 220, 220, 22, 264, 264, 24, 312, 312, 26, 364, 364, 28, 420, 420, 30, 480, 480, 32, 544, 544, 34, 612, 612, 36, 684, 684, 38, 760, 760, 40, 840, 840
Offset: 4
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
Crossrefs
Cf. A225232.
Programs
-
PARI
a(n)={2*((n-1)\3)*if(n%3==1, 1, (n-1)\3+1)} \\ Andrew Howroyd, Apr 27 2020
-
PARI
Vec(2*x^4*(1 + 2*x + 2*x^2 - x^3) / ((1 - x)^3*(1 + x + x^2)^3) + O(x^40)) \\ Colin Barker, Apr 29 2020
Formula
a(3*n+1) = 2*n; a(3*n) = a(3*n-1) = 2*n*(n-1). - Andrew Howroyd, Apr 27 2020
From Colin Barker, Apr 29 2020: (Start)
G.f.: 2*x^4*(1 + 2*x + 2*x^2 - x^3) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>12.
(End)
Extensions
a(16) corrected and terms a(17) and beyond from Andrew Howroyd, Apr 27 2020
Comments