A005424 Smallest number that requires n iterations of the bi-unitary totient function (A116550) to reach 1.
2, 3, 4, 5, 8, 9, 13, 16, 17, 24, 25, 35, 44, 63, 64, 91, 97, 128, 193, 221, 259, 324, 353, 391, 477, 702, 929, 1188, 1269, 1589, 1613, 2017, 2309, 2623, 3397, 4064, 4781, 5468, 6515, 6887, 9213, 12286, 12887, 14009, 16564, 16897, 17803, 30428, 36256
Offset: 1
A385744 The number of iterations of the infinitary analog of the totient function A384247 that are required to reach from n to 1.
0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 3, 4, 3, 5, 6, 7, 5, 6, 4, 4, 5, 6, 5, 6, 4, 6, 6, 7, 5, 6, 7, 5, 7, 6, 6, 7, 6, 6, 7, 8, 4, 5, 6, 8, 6, 7, 6, 7, 6, 8, 7, 8, 6, 8, 6, 7, 7, 8, 6, 7, 6, 7, 7, 7, 5, 6, 7, 7, 6, 7, 8, 9, 7, 7, 7, 7, 6, 7, 7, 8, 8, 9, 7, 8, 5, 7
Offset: 1
Comments
First differs from A049865 at n = 24.
Examples
n | a(n) | iterations --+------+---------------------- 2 | 1 | 2 -> 1 3 | 2 | 3 -> 2 -> 1 4 | 3 | 4 -> 3 -> 2 -> 1 5 | 4 | 5 -> 4 -> 3 -> 2 -> 1 6 | 2 | 6 -> 2 -> 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n]; a[n_] := Length @ NestWhileList[iphi, n, # != 1 &] - 1; Array[a, 100]
-
PARI
iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2))));} a(n) = if(n == 1, 0, 1 + a(iphi(n)));
Formula
a(n) = a(A384247(n)) + 1 for n >= 2.
Comments
References
Links
Crossrefs
Programs
Maple
Mathematica