cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005424 Smallest number that requires n iterations of the bi-unitary totient function (A116550) to reach 1.

Original entry on oeis.org

2, 3, 4, 5, 8, 9, 13, 16, 17, 24, 25, 35, 44, 63, 64, 91, 97, 128, 193, 221, 259, 324, 353, 391, 477, 702, 929, 1188, 1269, 1589, 1613, 2017, 2309, 2623, 3397, 4064, 4781, 5468, 6515, 6887, 9213, 12286, 12887, 14009, 16564, 16897, 17803, 30428, 36256
Offset: 1

Views

Author

Keywords

Comments

Let p(n) = number of unitary divisors k of n, k

References

  • M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    L := [seq(0,i=0..100)] ;
    for n from 1 do
        itr := A225320(n) ;
        if itr < nops(L) then
            if op(itr,L) = 0 then
                L := subsop(itr=n,L) ;
                print(L) ;
            end if;
        end if;
    end do: # R. J. Mathar, May 02 2013
  • Mathematica
    A116550[1] = 1; A116550[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; A225320[n_] := A225320[n] = If[n == 1, 0, 1+A225320[A116550[n]]]; L = Array[0&, 100]; For[n = 1, n <= 40000, n++, itr = A225320[n]; If[itr < Length[L], If[L[[itr]] == 0, L = ReplacePart[L, itr -> n]; Print[Select[L, Positive] // Last]]]]; Select[L, Positive] (* Jean-François Alcover, Jan 13 2014, after R. J. Mathar *)

A385744 The number of iterations of the infinitary analog of the totient function A384247 that are required to reach from n to 1.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 3, 4, 3, 5, 6, 7, 5, 6, 4, 4, 5, 6, 5, 6, 4, 6, 6, 7, 5, 6, 7, 5, 7, 6, 6, 7, 6, 6, 7, 8, 4, 5, 6, 8, 6, 7, 6, 7, 6, 8, 7, 8, 6, 8, 6, 7, 7, 8, 6, 7, 6, 7, 7, 7, 5, 6, 7, 7, 6, 7, 8, 9, 7, 7, 7, 7, 6, 7, 7, 8, 8, 9, 7, 8, 5, 7
Offset: 1

Author

Amiram Eldar, Jul 08 2025

Keywords

Comments

First differs from A049865 at n = 24.

Examples

			  n | a(n) | iterations
  --+------+----------------------
  2 |    1 | 2 -> 1
  3 |    2 | 3 -> 2 -> 1
  4 |    3 | 4 -> 3 -> 2 -> 1
  5 |    4 | 5 -> 4 -> 3 -> 2 -> 1
  6 |    2 | 6 -> 2 -> 1
		

Crossrefs

Similar sequences: A003434, A049865, A225320, A333609.

Programs

  • Mathematica
    f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n];
    a[n_] := Length @ NestWhileList[iphi, n, # != 1 &] - 1; Array[a, 100]
  • PARI
    iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2))));}
    a(n) = if(n ==  1, 0, 1 + a(iphi(n)));

Formula

a(n) = a(A384247(n)) + 1 for n >= 2.
Showing 1-2 of 2 results.