A225371 a(n) = number of squares in M(n,2), the ring of n X n matrices over GF(2).
1, 2, 10, 260, 31096, 13711952, 28275659056, 224402782202048, 7293836994286696576, 952002419516769475035392, 497678654312172407869125822976, 1044660329769242614113093804053562368, 8745525723307044762290950664928498588583936
Offset: 0
Links
- Victor S. Miller, Table of n, a(n) for n = 0..30
- Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.
- Giovanni Resta, C program for a(k), with k <= 6.
- Index entries for matrices, binary, which are squares
Programs
-
PARI
a(n)=#vecsort(lift(vector(2^n^2,k,matrix(n,n,i,j,bittest(k,(i-1)*n+j-1))^2*Mod(1,2))),,8) \\ Charles R Greathouse IV, May 07 2013
-
PARI
ZM(k)=matrix(n,n,i,j,bittest(k,(i-1)*n+j-1))*Mod(1,2) MZ(M)=my(n=matsize(M)[1]);sum(i=1,n,sum(j=1,n,M[i,j]<<((i-1)*n+j-1))) a(n)=#vecsort(vector(2^n^2,i,MZ(lift(ZM(i,n)^2))),,8) \\ Charles R Greathouse IV, May 07 2013
Extensions
a(5)-a(6) from Giovanni Resta, May 08 2013
a(7)-a(30) from Victor S. Miller, May 24 2013
Comments