A225399 Number of nontrivial triangular numbers dividing triangular(n).
0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 3, 4, 0, 1, 1, 1, 6, 2, 0, 2, 4, 0, 1, 3, 0, 2, 2, 0, 3, 1, 0, 8, 2, 0, 1, 5, 1, 2, 2, 0, 7, 3, 0, 2, 4, 0, 2, 3, 0, 1, 4, 3, 4, 1, 0, 4, 4, 0, 2, 5, 1, 3, 1, 0, 2, 4, 0, 3, 3, 0, 2, 5, 0, 4, 1, 1, 7, 1, 0, 3, 8, 0, 1
Offset: 0
Keywords
Examples
triangular(3) = 6 is divisible by triangular(2) = 3, so a(3) = 1. triangular(8) = 36 is divisible by triangular(2) = 3 and triangular(3) = 6, so a(8) = 2.
Programs
-
C
#include
int main() { unsigned long long c, i, j, t, tn; for (i = tn = 0; i < (1ULL<<32); i++) { for (c=0, tn += i, t = j = 3; t*2 <= tn; t+=j, ++j) if (tn % t == 0) ++c; printf("%llu, ", c); } return 0; } -
Maple
A225399 := proc(n) option remember ; local a,tn,i; a := 0 ; tn := A000217(n) ; for i from 2 to n-1 do if modp(tn,A000217(i))=0 then a := a+1 ; end if; end do: a; end proc: seq(A225399(n),n=0..80) ; # R. J. Mathar, Jan 12 2024
-
Mathematica
tri = Table[n (n + 1)/2, {n, 100}]; Table[cnt = 0; Do[If[Mod[tri[[n]], tri[[k]]] == 0, cnt++], {k, 2, n - 1}]; cnt, {n, 0, Length[tri]}] (* T. D. Noe, May 07 2013 *)
Formula
a(n) = A076982(n) - 2 for n > 1.
Comments