cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225436 Denominators of convergents to the general continued fraction 1/(1 + 2/(1 + 3/(1 + 4/(1+ ...)))).

Original entry on oeis.org

1, 3, 3, 9, 12, 39, 123, 87, 771, 1473, 11427, 46779, 19533, 212559, 1890093, 8691981, 1570137, 9863961, 486463449, 2459255649, 6337494039, 16694653089, 7166066763, 51605000913, 2729643372111, 7738039298811, 89176449644619, 104501330075607, 1554311845035993, 361227369257943
Offset: 1

Views

Author

Eric W. Weisstein, May 07 2013

Keywords

Comments

1

Examples

			1, 1/3, 2/3, 4/9, 7/12, 19/39, ... = A225435(n)/A225436(n).
		

Crossrefs

Cf. A225435 (numerators).
Cf. A111129 (decimal digits of infinite c.f.).
Related to A000932.

Programs

  • Mathematica
    Denominator[Table[ContinuedFractionK[k, 1, {k, 1, n}], {n, 30}]]

Formula

E.g.f: (1/2)*(2+e^((1/2)*(1+z)^2)*sqrt(2*Pi)*(1+z)*(-erf(1/sqrt(2))+erf((1+z)/sqrt(2)))).
Limit_{n->oo} A225435(n)/a(n) = sqrt(2/(e*Pi))/erfc(1/sqrt(2))-1 = A111129.