cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225468 Triangle read by rows, S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 8, 39, 15, 1, 16, 203, 159, 26, 1, 32, 1031, 1475, 445, 40, 1, 64, 5187, 12831, 6370, 1005, 57, 1, 128, 25999, 107835, 82901, 20440, 1974, 77, 1, 256, 130123, 888679, 1019746, 369061, 53998, 3514, 100, 1
Offset: 0

Views

Author

Peter Luschny, May 16 2013

Keywords

Comments

The definition of the Stirling-Frobenius subset numbers: S_m(n, k) = (Sum_{j=0..n} binomial(j, n-k)*A_m(n, j)) / (m^k*k!) where A_m(n, j) are the generalized Eulerian numbers. For m = 1 this gives the classical Stirling set numbers A048993. (See the links for details.)
From Peter Bala, Jan 27 2015: (Start)
Exponential Riordan array [ exp(2*z), 1/3*(exp(3*z) - 1)].
Triangle equals P * A111577 = P^(-1) * A075498, where P is Pascal's triangle A007318.
Triangle of connection constants between the polynomial basis sequences {x^n}n>=0 and { n!*3^n*binomial((x - 2)/3,n) }n>=0. An example is given below.
This triangle is the particular case a = 3, b = 0, c = 2 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End)

Examples

			[n\k][ 0,    1,     2,    3,    4,  5,  6]
[0]    1,
[1]    2,    1,
[2]    4,    7,     1,
[3]    8,   39,    15,    1,
[4]   16,  203,   159,   26,    1,
[5]   32, 1031,  1475,  445,   40,  1,
[6]   64, 5187, 12831, 6370, 1005, 57,  1.
Connection constants: Row 3: [8, 39, 15, 1] so
x^3 = 8 + 39*(x - 2) + 15*(x - 2)*(x - 5) + (x - 2)*(x - 5)*(x - 8). - _Peter Bala_, Jan 27 2015
		

Crossrefs

Cf. A048993 (m=1), A039755 (m=2), A225469 (m=4).

Programs

  • Maple
    SF_S := proc(n, k, m) option remember;
    if n = 0 and k = 0 then return(1) fi;
    if k > n or k < 0 then return(0) fi;
    SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
    seq(print(seq(SF_S(n, k, 3), k=0..n)), n = 0..5);
  • Mathematica
    EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :
        if n == 0: return 1 if k == 0 else 0
        return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)
    def SF_S(n, k, m):
        return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/ (factorial(k)*m^k)
    for n in (0..6): [SF_S(n, k, 3) for k in (0..n)]

Formula

T(n, k) = (Sum_{j=0..n} binomial(j, n-k)*A_3(n, j)) / (3^k*k!) with A_3(n,j) = A225117.
For a recurrence see the Maple program.
T(n, 0) ~ A000079; T(n, 1) ~ A016127; T(n, 2) ~ A016297; T(n, 3) ~ A025999;
T(n, n) ~ A000012; T(n, n-1) ~ A005449; T(n, n-2) ~ A024212.
From Peter Bala, Jan 27 2015: (Start)
T(n,k) = Sum_{i = 0..n} (-1)^(n+i)*3^(i-k)*binomial(n,i)*Stirling2(i+1,k+1).
E.g.f.: exp(2*z)*exp(x/3*(exp(3*z) - 1)) = 1 + (2 + x)*z + (4 + 7*x + x^2)*z^2/2! + ....
T(n,k) = 1/(3^k*k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(3*j + 2)^n.
O.g.f. for n-th diagonal: exp(-2*x/3)*Sum_{k >= 0} (3*k + 2)^(k + n - 1)*((x/3*exp(-x))^k)/k!.
O.g.f. column k: 1/( (1 - 2*x)*(1 - 5*x)...(1 - (3*k + 2)*x) ). (End)
E.g.f. column k: exp(2*x)*((exp(3*x) - 1)/3)^k, k >= 0. See the Bala link for the S(3,0,2) exponential Riordan aka Sheffer triangle. - Wolfdieter Lang, Apr 10 2017