A225468 Triangle read by rows, S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
1, 2, 1, 4, 7, 1, 8, 39, 15, 1, 16, 203, 159, 26, 1, 32, 1031, 1475, 445, 40, 1, 64, 5187, 12831, 6370, 1005, 57, 1, 128, 25999, 107835, 82901, 20440, 1974, 77, 1, 256, 130123, 888679, 1019746, 369061, 53998, 3514, 100, 1
Offset: 0
Examples
[n\k][ 0, 1, 2, 3, 4, 5, 6] [0] 1, [1] 2, 1, [2] 4, 7, 1, [3] 8, 39, 15, 1, [4] 16, 203, 159, 26, 1, [5] 32, 1031, 1475, 445, 40, 1, [6] 64, 5187, 12831, 6370, 1005, 57, 1. Connection constants: Row 3: [8, 39, 15, 1] so x^3 = 8 + 39*(x - 2) + 15*(x - 2)*(x - 5) + (x - 2)*(x - 5)*(x - 8). - _Peter Bala_, Jan 27 2015
Links
- Vincenzo Librandi, Rows n = 0..50, flattened
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
Crossrefs
Programs
-
Maple
SF_S := proc(n, k, m) option remember; if n = 0 and k = 0 then return(1) fi; if k > n or k < 0 then return(0) fi; SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end: seq(print(seq(SF_S(n, k, 3), k=0..n)), n = 0..5);
-
Mathematica
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
Sage
@CachedFunction def EulerianNumber(n, k, m) : if n == 0: return 1 if k == 0 else 0 return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m) def SF_S(n, k, m): return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/ (factorial(k)*m^k) for n in (0..6): [SF_S(n, k, 3) for k in (0..n)]
Formula
T(n, k) = (Sum_{j=0..n} binomial(j, n-k)*A_3(n, j)) / (3^k*k!) with A_3(n,j) = A225117.
For a recurrence see the Maple program.
From Peter Bala, Jan 27 2015: (Start)
T(n,k) = Sum_{i = 0..n} (-1)^(n+i)*3^(i-k)*binomial(n,i)*Stirling2(i+1,k+1).
E.g.f.: exp(2*z)*exp(x/3*(exp(3*z) - 1)) = 1 + (2 + x)*z + (4 + 7*x + x^2)*z^2/2! + ....
T(n,k) = 1/(3^k*k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(3*j + 2)^n.
O.g.f. for n-th diagonal: exp(-2*x/3)*Sum_{k >= 0} (3*k + 2)^(k + n - 1)*((x/3*exp(-x))^k)/k!.
O.g.f. column k: 1/( (1 - 2*x)*(1 - 5*x)...(1 - (3*k + 2)*x) ). (End)
E.g.f. column k: exp(2*x)*((exp(3*x) - 1)/3)^k, k >= 0. See the Bala link for the S(3,0,2) exponential Riordan aka Sheffer triangle. - Wolfdieter Lang, Apr 10 2017
Comments