A225475 Triangle read by rows, k!*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
1, 1, 1, 3, 4, 2, 15, 23, 18, 6, 105, 176, 172, 96, 24, 945, 1689, 1900, 1380, 600, 120, 10395, 19524, 24278, 20880, 12120, 4320, 720, 135135, 264207, 354662, 344274, 241080, 116760, 35280, 5040, 2027025, 4098240, 5848344, 6228096, 4993296, 2956800, 1229760
Offset: 0
Examples
[n\k][ 0, 1, 2, 3, 4, 5] [0] 1, [1] 1, 1, [2] 3, 4, 2, [3] 15, 23, 18, 6, [4] 105, 176, 172, 96, 24, [5] 945, 1689, 1900, 1380, 600, 120.
Links
- Vincenzo Librandi, Rows n = 0..50, flattened
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
Programs
-
Mathematica
SFCO[n_, k_, m_] := SFCO[n, k, m] = If[ k > n || k < 0, Return[0], If[ n == 0 && k == 0, Return[1], Return[ k*SFCO[n - 1, k - 1, m] + (m*n - 1)*SFCO[n - 1, k, m]]]]; Table[ SFCO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013, translated from Sage *)
-
Sage
@CachedFunction def SF_CO(n, k, m): if k > n or k < 0 : return 0 if n == 0 and k == 0: return 1 return k*SF_CO(n-1, k-1, m) + (m*n-1)*SF_CO(n-1, k, m) for n in (0..8): [SF_CO(n, k, 2) for k in (0..n)]
Comments