A225476 Triangle read by rows, k!*2^k*S_2(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
1, 1, 1, 1, 4, 2, 1, 13, 18, 6, 1, 40, 116, 96, 24, 1, 121, 660, 1020, 600, 120, 1, 364, 3542, 9120, 9480, 4320, 720, 1, 1093, 18438, 74466, 121800, 94920, 35280, 5040, 1, 3280, 94376, 576576, 1394064, 1653120, 1028160, 322560, 40320, 1, 9841, 478440, 4319160
Offset: 0
Examples
[n\k][0, 1, 2, 3, 4, 5 ] [0] 1, [1] 1, 1, [2] 1, 4, 2, [3] 1, 13, 18, 6, [4] 1, 40, 116, 96, 24, [5] 1, 121, 660, 1020, 600, 120.
Links
- Vincenzo Librandi, Rows n = 0..50, flattened
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
Crossrefs
Programs
-
Maple
SF_SSO := proc(n, k, m) option remember; if n = 0 and k = 0 then return(1) fi; if k > n or k < 0 then return(0) fi; k*SF_SSO(n-1, k-1, m) + (m*(k+1)-1)*SF_SSO(n-1, k, m) end: seq(print(seq(SF_SSO(n, k, 2), k=0..n)), n = 0..5);
-
Mathematica
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n - k) + m - 1)*EulerianNumber[n - 1, k - 1, m] + (m*k + 1)*EulerianNumber[n - 1, k, m]]); SFSSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n - k], {j, 0, n}]/m^k; Table[ SFSSO[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
Sage
@CachedFunction def EulerianNumber(n, k, m) : if n == 0: return 1 if k == 0 else 0 return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+(m*k+1)*EulerianNumber(n-1, k, m) def SF_SSO(n, k, m): return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/m^k for n in (0..6): [SF_SSO(n, k, 2) for k in (0..n)]
Formula
T(n, k) = sum_{j=0..n} A_2(n, j)*binomial(j, n-k), where A_2(n, j) are the generalized Eulerian numbers of order m=2.
For a recurrence see the Maple program.
Comments