cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225476 Triangle read by rows, k!*2^k*S_2(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 13, 18, 6, 1, 40, 116, 96, 24, 1, 121, 660, 1020, 600, 120, 1, 364, 3542, 9120, 9480, 4320, 720, 1, 1093, 18438, 74466, 121800, 94920, 35280, 5040, 1, 3280, 94376, 576576, 1394064, 1653120, 1028160, 322560, 40320, 1, 9841, 478440, 4319160
Offset: 0

Views

Author

Peter Luschny, May 19 2013

Keywords

Comments

The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program).

Examples

			[n\k][0,   1,   2,    3,   4,   5 ]
[0]   1,
[1]   1,   1,
[2]   1,   4,   2,
[3]   1,  13,  18,    6,
[4]   1,  40, 116,   96,  24,
[5]   1, 121, 660, 1020, 600, 120.
		

Crossrefs

T(n, 0) ~ A000012; T(n, 1) ~ A003462; T(n, 2) ~ A007798.
T(n, n) ~ A000142; T(n, n-1) ~ A001563.
Alternating row sum ~ A000364 (Euler secant numbers).
Cf. A225468, A131689 (m=1).

Programs

  • Maple
    SF_SSO := proc(n, k, m) option remember;
    if n = 0 and k = 0 then return(1) fi;
    if k > n or k < 0 then return(0) fi;
    k*SF_SSO(n-1, k-1, m) + (m*(k+1)-1)*SF_SSO(n-1, k, m) end:
    seq(print(seq(SF_SSO(n, k, 2), k=0..n)), n = 0..5);
  • Mathematica
    EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n - k) + m - 1)*EulerianNumber[n - 1, k - 1, m] + (m*k + 1)*EulerianNumber[n - 1, k, m]]); SFSSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n - k], {j, 0, n}]/m^k; Table[ SFSSO[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :
        if n == 0: return 1 if k == 0 else 0
        return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+(m*k+1)*EulerianNumber(n-1, k, m)
    def SF_SSO(n, k, m):
        return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/m^k
    for n in (0..6): [SF_SSO(n, k, 2) for k in (0..n)]

Formula

T(n, k) = sum_{j=0..n} A_2(n, j)*binomial(j, n-k), where A_2(n, j) are the generalized Eulerian numbers of order m=2.
For a recurrence see the Maple program.